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Abstract—Liver segmentation is still a challenging task in
medical image processing area due to the complexity of the
liver’s anatomy, low contrast with adjacent organs and presence
of pathologies. This investigation was used to develop and
validate an automated method to segment livers in CT images.
The proposed framework consists of three steps: preprocessing,
initialization and segmentation. In the first step, statistical shape
model is constructed based on principal component analysis and
the input image is smoothed using curvature anisotropic diffusion
filtering. In the second step, the mean shape model is moved
by using thresholding and Euclidean distance transformation to
obtain a coarse position in a test image, and then the initial mesh
is locally and iteratively deformed to the coarse boundary, which
is constrained to stay close to a subspace of shapes describing
the anatomical variability. Finally, in order to accurately detect
the liver surface, deformable graph cut was proposed, which
effectively integrates the properties and inter-relationship of the
input images and initialized surface. The proposed method was
evaluated on 50 CT scan images, which are publicly available in
two databases Sliver07 and 3Dircadb. The experimental results
showed that the proposed method was effective and accurate for
detection of the liver surface.

Index Terms—Liver Segmentation, Principal Component Anal-
ysis, Euclidean Distance Transformation, Deformable Graph Cut.

I. INTRODUCTION

L IVER cancer has been among the 6 most common
cancers and also a leading cause of cancer deaths

worldwide. In 2012, it was reported that about 782,000 new
cases were diagnosed with liver cancer and about 745, 000
people died from this disease worldwide [1]. Consequently,
particular effort is being made in early diagnosis and therapy.
Liver segmentation in medical images is very important to
accurately evaluate patient-specific liver anatomy for hepatic
disease diagnosis, function assessment and treatment decision-
making. Computed Tomography (CT) is now well-established
for noninvasive diagnosis of hepatic disease due to recent
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Fig. 1. Examples of the complex anatomical structures and large variations
of liver shapes. (a) A CT image slice of a healthy person in coronal view.
(b) A CT image slice in axial view from one patient with liver cancer. The
normal liver and its several neighboring organs share similar intensities while
the liver parenchyma and pathological changes exhibit non-homogeneous gray
level.

technological advances in X-ray tubes, detectors, and recon-
struction algorithms. On the other hand, the amount of data
produced by high resolution CT scanners, as well as the time
needed to review the resulting several thousand slices, has been
continuously increasing, which makes it tedious and time-
consuming for radiologists and physicians [2]. Semi-automatic
or automatic liver segmentation are helpful and advisable in
clinical applications. Recently, numerous methods have been
proposed to segment livers effectively and efficiently. Many
researchers have provided publicly available datasets and/or
organized liver segmentation competitions to investigate those
current segmentation algorithms [3].

Although CT images have been widely used in clinics, liver
segmentation is still a challenging task in the medical image
processing field. As can be seen in Fig.1, there are several
special characteristics from the liver’s anatomical structure.
First, there are several neighboring organs, e.g. muscles, heart
and stomach, and they share similar intensities, which lead to
low contrast and blurred boundaries in CT images between the
liver and its neighboring organs. Therefore, liver segmentation
using pixel based methods such as region growing may easily
leak to neighboring organs. Second, image artifacts, noise
and various pathologies, such as tumors often exist. Liver
segmentation can be disturbed by different gray value intervals
between hepatic tissues and artifacts. To tackle these problems,
shape priors are desirable and advisable, since they can help to
separate adjacent organs with similar intensities and preserve
liver shape with non-homogeneous gray level [4]. However,
liver shape modeling is not a trivial task. Anatomy of the
liver varies largely from different health individuals both in
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shape and size. Besides, tumors and other pathologies may
also change anatomical structure of a liver.

In this paper, we introduce a coarse-to-fine approach for the
segmentation of the whole liver from CT images. To make
the method automatic, the liver first needs to be localized in
the image. This task is challenging due to inter-patient and
inter-phase shape variability, liver pose and location variability
in the abdomen, variation in reconstructed field-of-view (the
reconstructed image may focus on the liver or may cover the
whole chest and abdomen). After successful liver initialization
using model adaptation method, liver shape can be adapted to
the coarse boundary. Due to the complexity of liver anatomy,
influenced by adjacent organs and insufficiency of shape prior,
it makes accurate segmentation difficult. The patient’s anatomy
is accurately and more robustly segmented using the proposed
deformable graph cut in a narrow band, which is well suited for
inter-patient and inter-phase shape variability. The proposed
deformable graph cut can reduce under-segmentation or over-
segmentation of livers since shape constraints are integrated
into region cost and boundary cost of the traditional graph cut
[5]–[7] in a narrow band of the initial shape.

II. RELATED WORK

In the last few decades, many approaches have been pro-
posed for liver segmentation. A comprehensive review of
different methods have been presented [3], [8]. Simple pixel-
based methods [9]–[12] include global thresholding, region
growing, voxel classification, or edge detection. Zhou et al.
[9] used a probabilistic model to estimate the initial spatial
location and calculated the liver probability to automatically
segment the liver from non-contrast X-ray Torso CT images.
van Rikxoort et al. [10] estimated the probability that each
voxel is part of the liver using a k-nearest-neighbor classifi-
er and a multi-atlas registration procedure to automatically
delineate the liver from CT images. Foruzan et al. [12]
proposed an intensity analysis and anatomical information
based method. The authors used an expectation maximization
(EM) algorithm to compute statistical parameters of the liver’s
intensity range, and combined a thresholding approach and an
anatomical based rule to interactively differentiate the liver
from its surrounding tissues. The region-growing based liver
segmentation approaches [11], [13], [14] can obtain good
results from contrast enhanced CT images but they are very
sensitive to initial seeds. Overall, pixel-based methods can
usually fail to automatically segment a liver due to noise,
similar gray-value distribution with neighboring organs, etc.

In 1993, Cootes et al. [15] introduced active shape models
to image segmentation. Typically, 3D point distribution model
(PDM) based statistical shape models (SSMs) were used in
[16]–[18] to automatically segment the liver from CT images.
These approaches first build a statistical model from a training
set of liver shapes. Each liver shape is represented by some
corresponding landmarks sampled on the surface in the train-
ing stage. Lamecker et al. [16] applied a SSM based method
with grey value profile model to segment livers. Kainmüller
et al. [17] integrated SSMs to a free-form segmentation
method. Zhang et al. [18] obtained a coarse liver shapes in

a test CT images using a generalized Hough transformation
based subspace initialization method, and then detected liver
boundaries using optimal surface segmentation. The optimal
surface detection algorithm proposed by Li et al. [19] was
used to find a minimum-cost closed set in a vertex-weighted
graph using max-flow/min-cut algorithms [6]. Heimann and
Meinzer [3] presented an overview of SSMs based methods
for segmentation of medical images. Wang et al. [4] integrated
a sparse shape composition model and a fast marching level
set method to achieve accurate segmentation of the hepatic
parenchyma, portal veins, hepatic veins, and tumors simultane-
ously. Subsequently, they employed a homotopy-based method
to solve the L1-norm optimization problem [20].

Graph cut was employed to segment liver automatically
since it was introduced by Boykov et al. [5]–[7]. To deal
with the intense memory requirements and the supralinear
time complexity for traditional graph cut, Lombaert et al.
[21] introduced a multilevel banded graph cuts method for
fast image segmentation. Xe et al. [22] used a graph cuts
based active contour method for image segmentation in a
narrow band. Massoptier et al. [23] applied a graph-cut
method initialized by an adaptive threshold to perform fully
automatic liver segmentation in CT images. Beichel et al. [24]
developed an interactive segmentation system which allowed
the user to manipulate liver volume by combining a graph cuts
segmentation method and a three-dimensional virtual reality
based segmentation refinement approach. Linguraru et al.
[25] employed a 3-D affine invariant shape parameterization
method to compare features of a set of closed 3-D surfaces
point-to-point correspondence to detect shape ambiguities on
an initial segmentation of the liver and used a shape-driven
geodesic active contour method to segment the liver, followed
by hepatic tumor segmentation using graph cut. Chen et al.
[26] combined an oriented active appearance model with a
pseudo-3-D initialization strategy and shape constrained graph
cuts to automatically segment livers. Song et al. [27] roughly
segmented the liver based on a kernel fuzzy C-means algorith-
m with spatial information and the refined segmentation was
performed based on the GrowCut algorithm. Tomoshige et al.
[28] combined a level set based conditional statistical shape
model and graph cuts segmentation based on the estimated
shape prior to automatic liver segmentation from non-contrast
abdominal CT volumes.

As described above, SSM based methods are desirable and
helpful to automatically segment livers from complex CT
images. Such methods use landmarks to represent shape and
describe shape variation in the training data sets, which are
difficult to account for in a specific target organ. Graph-
based methods can be utilized to search for a global optimal
solution while foreground seeds and background seeds are
often needed traditionally. Therefore, our aim is to combine
the complementary strengths of these methods to automatically
and robustly segment livers from CT images in this paper.
Compared to previous graph cut methods [5]–[7], [21], [26],
[28], the contributions of our method are as follows,
• Model initialization is performed by the integration of

principal component analysis (PCA), Euclidean distance
transformation (EDT) and deformable adaptation of the
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Fig. 2. The proposed segmentation framework. In the preprocessing step, shape models are trained for localization and segmentation, and original images
are smoothed. In the initialization step, the initial liver surface is detected using model adaptation. In the segmentation step, accurate liver surface detection
is achieved by the proposed deformable graph cut.

liver shape model. We show that the fast EDT based
method is able to detect the liver despite hepatic shape
and pose variability and for different imaging protocols.
This model adaptation process can be described as mini-
mizing the distance between the deformed mesh and the
coarse boundary, which is based on region and surface
constraints.

• Inspired by [18], [19], [29], [30], a new graph is con-
structed to achieve an accurate liver surface detection
by using the proposed deformable graph cut. Compared
to traditional graph cut, the novelties of the proposed
graph lie in arcs and weights. Compared to graph search,
it can integrate shape prior and different weights. The
presented approach can reduce under-segmentation or
over-segmentation of livers.

In the rest of this paper, in Section III, the complete
methodology of the segmentation algorithm is outlined. In
Section IV, preprocessing is described to construct a mean
liver shape model and smooth input CT volume. Section V
introduces the encoding of prior knowledge into liver models
to initialize segmentation. In Section VI, a final segmentation
method is presented. In Section VII, we describe an evaluation
of this method in terms of its accuracy and efficiency. In
Section VIII, we summarize our contributions and conclusions.

III. METHOD OVERVIEW

The proposed method is a coarse to fine segmentation
approach which consists of three major steps: 1) preprocessing,
2) model initialization, and 3) accurate surface detection.
Fig. 2 shows the framework of the proposed method. In the
preprocessing step, the mean shape model and its variation
modes are computed using PCA after training livers are
manually segmented, corresponded and aligned. For a test
image, it is smoothed through curvature anisotropic diffusion
filtering. In the initialization step, the mean shape model

(a) (b)
Fig. 3. Image Enhancement. (a) Original image. (b) Enhanced image using
curvature anisotropic diffusion filtering.

is translated according to a thresholded image and signed
Euclidean distance field of the test image. The moved mean
shape model is deformed based on its PDM and driven to the
target boundary. To accurately detect the boundary of a liver,
the deformable graph cut is presented to progressively find the
optimal surface with a minimal cost. The proposed deformable
graph cut effectively integrates shape information with optimal
3-D delineation capability of graph cut method.

IV. IMAGE PREPROCESSING

Before the initialization, an image preprocessing procedure
is applied to construct mean liver shape models and smooth
input CT volume. The mean liver shape model is trained
by using PCA, and CT images are enhanced by applying a
curvature anisotropic diffusion filter [31], as shown in Fig.3.

Statistical information can be learned from manually an-
notated images. These training images should be collected
from clinical applications and should reflect the variability of
the target object, such that the segmentation algorithm can
be applicable to the clinical question. However, adapting two
uncalibrated meshes with some motions such as significant
rotation and scale changes still remains a difficult problem.
The labeled binary images are converted into triangulated
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meshes to represent manual segmentation by using the march-
ing cube algorithm [32]. In order to reduce the time complexity
of the correspondence construction algorithm, all meshes are
simplified by using the quadric error metric algorithm [33]
with the same V vertices connected in T triangles. The
minimum description length (MDL) algorithm [34] is then
used to establish vertex correspondence between the reference
meshes. After obtaining the corresponding relationship be-
tween all reference meshes for the training data, surfaces need
to be aligned in one Cartesian coordinate system by similarity
transformation, in order to analyze inter-patient and inter-
phase shape variability. One point set of a mesh in the training
data set is randomly selected as a reference point set, the rest
of the point sets are considered as a floating point data set,
and the alignment is done by similarity transformation in the
three-dimensional space using the unit quaternion algorithm
[35].

The PDM can be used to describe shape variability using
PCA. With the combination of similarity transformation, the
resulting PDM can be expressed as

Ψk = T−1

(
Ψ̄ +

M∑
m=1

λm,kpm

)
(1)

where, Ψk denotes the kth triangulated mesh aligned using
similarity transformation from manual segmentation in the
training set (k = 1, 2, · · · , nf ), nf is the number of manual
segmented liver. T−1 is the inverse of similarity transformation
from the registered shape coordinate system to the original
coordinate system and Ψ̄ is the mean shape of the training set.
pm is the principal mode of variation obtained through PCA.
λm,k is the corresponding weight for each principal mode. M
is the number of modes. The mean shape model is computed
by

Ψ̄ =
1

nf

nf∑
k=1

Ψk (2)

V. MODEL INITIALIZATION

Acting as an important role in our method, model initializa-
tion provides a coarse surface for the deformable graph cut and
makes our approach automatic. A shape prior can be learned
from a representative set of generated meshes from training
images. The derived information can then be associated to
the vertices to improve and constrain the initialization. The
initialization algorithm proposed in this paper preserves the
mesh correspondence during adaptation (i.e., no vertex or
triangle is removed or inserted).

After input images are enhanced using curvature anisotropic
diffusion filtering, the initial position of the target liver should
be computed. The rough contour of the target liver which
may couple with several disjointed non-liver regions, can be
identified by thresholding. A small threshold value, e.g. 5%
of the maximal intensity value, can be enough. Since some
adjacent tissues are similar to the liver, morphological opening
can be used to remove those small structures. On the other
hand, hepatic lobes may be delineated in some slices, and
then morphological closing can be applied to connect the
disjointed regions or fill holes. In the experiments, we could

(a) (b)

(c) (d)
Fig. 4. Shape model location. (a) An enhanced image with a thresholded
image (red curve); (b) An enhanced image with a processed image (red curve)
with morphological operations; (c) Moved shape model in 2D slice view; (d)
Moved shape model in 3D slice view.

observe that position computation was not very sensitive to
those exact threshold values or radii of structuring elements for
morphological operations and can be successfully employed.
The distance transformation is then performed in the binary
images. The algorithm computes Euclidean distance for d-
dimensional images in linear time [36]. This algorithm is time
efficient and the results are sufficient for center computation.
The signed Euclidean distance field can be considered as
Γt (p), p denotes the image voxel, t is the segmented surface
obtained from the binary image Ib by using the marching
cube algorithm [32]. The initial position can be estimated with
minimal Euclidean distance as the Step 1 in Algorithm 1.

In order to adapt a mesh to the liver boundary in a
testing image, shape-constrained deformable models were used
and a PDM was also integrated into the deformable model
framework [2]. The initial mesh is locally deformed to the
boundary, which is constrained to stay close to a subspace of
shapes describing the anatomical variability. In this procedure,
the initial mesh is adapted to the target boundary and the initial
image is matched to the thresholded image in two alternating
steps. In each iteration, the first step consists of mesh deforma-
tion by progressively detecting the candidate boundary along
the normal of vertices such that the deformed mesh Ψτ can
be driven to the boundary. In the second step, the parameters
of the mean shape are adjusted to generate a subspace shape
model Ψλ and constrains the deformation of Ψτ (initially
the moved mean shape). This optimization process can be
described as minimizing the distance E between the deformed
mesh and the boundary. The objective function can be defined
as,

E = Eregion + κEsurface (3)

where, Eregion denotes a region term, which measures the
distance between Ψτ and Ψt in the signed Euclidean distance
field; Ψt represents mesh of the thresholded image; p repre-
sents a voxel in Euclidean distance field Γ; Esurface denotes
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(a) (b)

(c) (d)
Fig. 5. Shape model initialization. (a) An image representing signed Eu-
clidean distance field of the moved shape model (red curve); (b) An image
representing the signed Euclidean distance field of the target boundary (red
curve); (c) An obtained initial surface (the blue curve) using the proposed
model adaptation algorithm shown in a coronal view, the green curve is the
ground truth; (d) The initial surface (blue mesh) in a 3D slice view.

a boundary term which measures Euclidean distance between
Ψτ and Ψλ, Ψt; v represents the corresponding vertex on the
Ψτ , Ψλ and Ψt; κ controls the balance between region and
surface constraints.

A. Model Deformation

For each vertex vi on a subspace shape model Ψλ, boundary
candidates are searched along the normal vector ni of the ver-
tex at discrete positions j = −nm,−nm+1, · · · , 0, · · · , nm−
1, nm as

vij = vi + jδni (4)

where δ is the searching step on the profile. It depends on the
size of the liver and the distance between the initial mesh and
the boundary. It is computed according to the mean length
of edges, which connect the current vertex and its adjacent
vertices. nt is a moving threshold value. nt describes liver
region detection and small structures can be neglected in order
to improve the robustness to noise and non-liver structures in
the adjacent region. vi is moved to vij when vertex vi is inside
the liver (in the foreground of the binary image Ib) and the
vertex vij is searched along the normal vector ni and j > nt;
vi is moved to vij when vertex vi is outside the liver (in the
background of the binary image Ib) and vertex vij is searched
along the inverse normal vector −ni and |j| > nt. nm is the
maximal searching number. The parameter nm depends on
the voxel spacings and the distance between the initial mesh
and the boundary. To increase the search range and detect the
boundary quickly, nm can be set to be larger, which may lead
to incorrect boundary detection. The cost of mesh deformation
can be computed by

Eregion =
1

Nr

∑
p

(Γτ (p)− Γt (p)) (5)

where, Nr denotes a normalization parameter in the local
region. In the implementation, signed Euclidean distance field
Γτ for the deformed mesh and Γt for the boundary can be
calculated locally for the consideration of time and memory. In
some cases, some small holes may exist and deform the signed
Euclidean distance field in the target region, normalization by
Nr and preprocessing can reduce these influences.

B. Parametric Adaptation

During the process of mesh deformation, the shape model
Ψλ is also adapted to constrain the deformation of the initial
mesh Ψτ . The task can be accomplished by minimizing the
sum of the surface distances between Ψτ and Ψλ, Ψτ and
Ψt, which integrate and balance the shape prior and image
boundary information. The function to minimize is defined as

Esurface =
1

Ns
(d (Ψτ (v) ,Ψλ (v)) + ωd (Ψτ (v) ,Ψt (v)))

(6)
where, Ns denotes a normalization parameter; ω is the weight
balancing the shape prior and image boundary information.

At the beginning of the deformation, the mesh may be
farther from the boundary. The desirable boundaries may
accompany some surrounding organs, which may mislead
the mesh deformation. To utilize the shape prior, parametric
adaptation is employed to constrain the mesh deformation.
In this condition, the vertex positions are free variables and
can be represented as the mean shape and shape variability.
The deformed mesh Ψτ is registered to the mean mesh Ψ
using the unit quaternion algorithm [35] and get similarity
transformation parameters T and registered mesh T (Ψτ ). The
displacement ∆Ψ is computed as

∆Ψ = T (Ψτ )−Ψ =
M∑
m=1

bmpm (7)

The weight bm of the principal mode pm is computed
using the Least Squares method, and then truncate bm ∈[
−
√

3λm,
√

3λm
]

to get new weight ωm. A subspace shape
model Ψλ is generated as

Ψλ = T−1

(
Ψ +

M∑
m=1

ωmpm

)
(8)

Eq. (8) allows that the mean shape is deformed and registered
to the deformed mesh and make the deformed mesh depend on
the shape variability modeling. The whole process is described
as Algorithm 1.

VI. DEFORMABLE GRAPH CUT

Deformable graph cut is the key part in our framework
whose purpose is to precisely detect the surface of the liver
based on the initialized liver shape model. As reported in
the literature [18], [21], [22], [26], [28], [37], some sharp
structures such as the lateral lobe often exist as shown in Fig.5,
which makes it difficult to extract using these methods. The
deformable graph cut can be considered as an optimization
process aimed at progressively finding the optimal surface with
a minimal cost. It effectively integrates the shape information
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Algorithm 1 Model Adaptation.
Require:

A coarse contour of organs represented by a binary
image Ib; The mean mesh, Ψ; The principal modes,
pm,m = 1, 2, · · · ,M ; The weights of the principal
modes, λm,m = 1, 2, · · · ,M ; The balance parameter, κ;
The moving threshold value, nt; The maximal searching
number, nj ; The balancing weight, ω; Energy threshold
value, Et.

Ensure:
Adapted liver mesh, Ψτ .

1: Compute Γt (p) by performing EDT for interior and
exterior of Ib, and find the coordinates ⇀

pc of the voxel
with the minimal signed Euclidean distance;

2: Compute the center of the mean mesh Ψ, move it to ⇀
pc

and then get the initial mesh Ψτ ;
3: Initialize energy, Eb ←∞;
4: for vi on the mesh on Ψτ do
5: Compute the mean length l of adjacent edges of vertex

vi, and then obtain the searching step δ = l;
6: Sample vertices along the normal vector ni of Ψτ

according to Eq. (4);
7: if vi is in the background of Ib then
8: Search the first vertex vij in the foreground of Ib

along ni from vi, and get the number j;
9: else

10: Search the first vertex vij in the background of Ib
along −ni from vi, and get the number j;

11: end if
12: vi ← vij , if |j| > nt;
13: end for
14: Convert the deformed mesh Ψτ to a binary image and

compute the signed Euclidean distance field Γτ (p);
15: Compute the mesh deformation cost Eregion (p) according

to Eq. (5), Nr is the maximal distance; Compute the
surface distance d (Ψτ (v) ,Ψt (v));

16: Register the deformed mesh Ψτ to the mean mesh Ψ and
get similarity transformation parameters T and registered
mesh T (Ψτ );

17: Compute displacement ∆Ψ← T (Ψτ )− Ψ̄;
18: Compute the weight bm of the principal mode pm

using the Least Squares method, and truncate bm ∈[
−
√

3λm,
√

3λm
]

to obtain the new weight ωm;
19: Compute the subspace shape model Ψλ according to

Eq.(8) with the weight ωm;
20: Compute Esurface (v) according to Eq.(6);
21: Compute E (p, v) according to Eq.(3);
22: ∆E ← Eb − E (p, v), Eb ← E (p, v);
23: If |∆E| < Et, Ψτ ← Ψλ, and then go to step 4; else, get

Ψτ and stop.

with the globally optimal 3-D delineation capability of the
graph cut method [6]. The three major components are graph
construction, cost function design and optimal surface detec-
tion. Graph construction and cost function design are usually
carried out in one step to effectively integrate the properties

and inter-relationship of the input images and shape prior.
After the graph is constructed, the desirable surface can be
detected by applying the traditional graph cut algorithm [6].

A. Graph Construction

After the mean shape is deformed using the proposed model
adaptation method, an initial surface Ψτ can be obtained and
then a weighted directed and irregular graph G is constructed
in a narrow band around Ψτ . With the improvement of CT s-
canners, higher resolution can be reached in CT images, which
leads to sharp increase in memory usage [21], [38]. Unlike the
traditional graph construction algorithms which built a regular
graph for the entire image [21], [22], [26], [28], [37], our graph
construction strategy enables the construction of a deformable
graph according to the initial surface properties.

The graph construction process is illustrated in Fig. 6. For
each vertex vi on the mesh Ψτ , a column of equidistant points
is sampled along the gradient of the signed Euclidean distance
field. In order to detect the desirable surface especially in the
shape region, points sampled along the normal direction may
lead to incorrect local surface propagation. To address this
issue, a novel graph is constructed and consists of three types
of nodes V = {T ,N ,S} and four types of weighted arcs
E = {Ea, Er, Et, Es}. A sink node T represents a set of
voxels in the interior of Ψτ , whose distance value is smaller
than a threshold value dmin; a source node S represents a set
of voxels in the exterior of Ψτ , whose distance value is larger
than a threshold value dmax. The distance value is negative in
the interior of Ψτ and vice versa. The node set N corresponds
to sampled points in the signed Euclidean distance field of
the mesh Ψτ . At the beginning of the sampling, the points
correspond to vertices in mesh Ψτ . The subsequent points
are sampled along the local gradient of the signed Euclidean
distance field started from mesh Ψτ , as shown in Fig.6(a). The
columns in graph G are formed as

vi,j+1 = vi,j + ∆ · gi,j ,
j = −ng,−ng + 1, · · · , 0, · · · , ng − 1, ng,

ng =
Ng−1

2 .

(9)

where, vi,j is the jth node in the ith column of the graph,
vi,0 is the vertex of the initial surface; ∆ is the sampling step;
and gi,j is the gradient of node vi,j in the signed Euclidean
distance field. Ng is the number of sampling points.

As shown in Fig.6, the arc set E contains four types of
weighted arcs: intra-column arcs Ea, inter-column arcs Er,
sink arcs Et and source arcs Es. An intra-column arc in Ea
connects unidirectionally and inwardly two successive nodes
in a column generated from a vertex on the initial mesh. An
inter-column arc in Er connects two nodes on two adjacent
columns. A sink arc in Et unidirectionally connects each node
in N to the sink node T . A source arc in Es unidirectionally
connects source node S to each node in N . The arcs in graph
G are defined as

E =


Ea = {e (vi,j , vi,j+1)}
Er = {e (vi,j , vl,j+k)}
Es = {e (S, vi,j)}
Et = {e (vi,j , T )}

(10)
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Fig. 6. Illustration of the deformable graph cut. (a) The gray image repre-
senting the signed Euclidean distance field of the initialized mesh, where the
three green curves denote deformable sampling paths for graph construction
and the rest of the curves are iso-contours of the signed Euclidean distance
field; (b) A deformable graph from the initialized mesh.

where, vl,j+k shows the node adjacent columns,
j = −ng,−ng + 1, · · · , 0, · · · , ng − 1, k = 0,±1, · · · ,±∆k,
∆k is the spatial smoothness constraints.

B. Cost Function Design

The deformable graph cut is driven by cost functions
associated with the graph vertices, which reflect properties of
the initial surface. Derived from the traditional graph cut [5]–
[7], the deformable graph cut can be defined as an energy
minimization problem. For a set of nodes N and a set of
labels L, the goal is to find a labeling f : N → L such that
the surface of an object can be detected by minimizing the
energy function E (f).

In our framework, for each node vi,j (denoted by v) in
the node set N , the region cost is the sum of a data penalty
term D (fv), which is constrained by a shape region penalty
term Sr (dv). The data term is defined according to image
intensity and can be considered as a cluster likelihood of image
intensity for the target object. The boundary term B (fv, fu)
is also based on image intensity, which is also constrained by
a shape boundary penalty term Sb (dv, du). The shape region

(a) (b)
Fig. 7. Final liver segmentation. (a) The red curve represents the final
segmentation of the liver; the green curve represents ground truth; (b) The
corresponding final liver segmentation in a 3D slice view.

term and the shape boundary penalty term are both dependent
on the signed Euclidean distance field corresponding to the
initial shape. The proposed shape-constrained energy function
is defined as,

E (f) =
∑
v∈N

(D (fv) · Sr (dv)) +∑
v∈N ,u∈nv

χ ·B (fv, fu) · Sb (dv, du) ,

(11)
where, u ∈ nv denotes adjacent nodes of v corresponding to
Ea and Er. The parameter χ controls the balance between the
region cost and boundary cost. These terms, which correspond
to the weights of the four types of arcs E = {Ea, Er, Et, Es},
are defined as follows:

D (fv) =

 exp
(
− (Is−Iv)2

2σ2
s

)
, e (S, v) ∈ Es;

exp
(
− (Iv−It)2

2σ2
t

)
, e (v, T ) ∈ Et.

, (12)

Voxels in the original image were considered as foreground
seeds and background seeds, whose distances are respectively
smaller and larger than given values in the signed Euclidean
distance field, e.g., 50% of the minimal distance and maximal
distance. The seeds were then clustered using K-means. Is and
It were intensities of the clustered center in the Nc clusters.
Iv is the intensity of a node. The differences (Is − Iv)2
and (Iv − It)2 are respectively computed and the minimal
values are used for the computation of D (fv) in Eq.(12).
σs, σt are the standard deviation of the intensity differences
between sampled points and foreground seeds, background
seeds respectively.

Sr (dv) =



exp
(

dv
dmax

)
,

dv ≤ dmax, j < ng,
e (S, v) ∈ Es;

∞, dv > dmax, or, j = ng,
e (S, v) ∈ Es;

exp
(

dv
dmin

)
,

dv ≥ dmin, j > −ng,
e (v, T ) ∈ Et;

∞, dv < dmin, or, j = −ng,
e (v, T ) ∈ Et.

,

(13)
where, dv represents distance of the sampled nodes in the
signed Euclidean distance field Γ for the current surface.
dmin, dmax are parameters of the minimal distance and maxi-
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Algorithm 2 Deformable Graph Cut.
Require:

The enhanced image, IE ; Adapted liver mesh, Ψτ ; Dis-
tance percent (0 − 1), pd; Number of K-means clusters,
Nc; The sampling points number, Ng; Mesh subdivision
parameter, ts; The standard deviations, σs, σt, σu, σd; The
spatial smoothness constraints, ∆k; The balance parame-
ter, χ; Surface distance threshold value, Ed.

Ensure:
Detected liver surface, Ψo.

1: Subdivide adapted liver mesh Ψτ using the butterfly
subdivision algorithm [39], compute its bounding box and
broaden it with Np = 20 voxels in the six end points;

2: Convert Ψτ to a binary image in the broaden bounding box
and compute the signed Euclidean distance field Γτ (p);

3: Create foreground seeds (d < dmin ← pd · Dmin) and
background seeds (d > dmax ← pd · Dmax), Dmin and
Dmax are the minimal and maximal distance in Γτ (p);

4: Apply K-means to the gray values of the seeds, and obtain
K mean intensities for foreground seeds and background
seeds respectively;

5: for vi on the mesh on Ψτ do
6: Compute the mean length l of edges for vertex vi, and

then obtain the searching step ∆← l;
7: Compute the normalized gradient gi,j of node vi,j in

Γτ (p);
8: Sample vertices along gi,j according to Eq. (9);
9: end for

10: Create graph G according to Eq. (10);
11: for v in the node set N do
12: Compute the weight $ of Es according to Eq. (12) and

Eq. (13): If d > dmax or j = ng , then $ ← ∞; Else
compute (Is − Iv)2 and select the smallest value;

13: Compute the weight $ of Et according to Eq. (12) and
Eq. (13): If d < dmin or j = −ng , then $ ←∞; Else
compute (Iv − It)2 and select the smallest value;

14: Compute the weight $ of Ea, Er according to Eq. (14)
and Eq. (15);

15: end for
16: Optimize energy function Eq. (11) by using the traditional

graph cut algorithm;
17: for j ← −ng, · · · , ng for each column of vi do
18: if L(v) = source, and then vi ← v;
19: end for
20: Simplify the adapted mesh Ψ

′

τ by using the quadric error
metric algorithm [35], and smooth the adapted mesh Ψ

′

τ

by using Laplacian Smoothing algorithm [40];
21: Compute the mean surface distance de ← d(Ψ

′

τ ,Ψτ )/Vm;
If de > Ed, Ψτ ← Ψ

′

τ and go to step 1; else Ψo ← Ψ
′

τ

and stop.

mal distance, dmin ≤ 0, dmax ≥ 0.

B (dv, du) = exp

(
− (Iv − Iu)

2

2σ2
u

)
, e (v, u) ∈ {Ea, Er} ,

(14)
where, Iu represents intensity of the adjacent sampled nodes

of v, σu is the standard deviation of the intensity differences
between sampled nodes v and u.

Sb (dv, du) = exp

(
− (dv − du)

2

2σ2
d

)
, e (v, u) ∈ {Ea, Er} .

(15)
where, dv, du are the distances in Γ of sampled nodes v and
u, and σd is the standard deviation of the distance differences
between sampled nodes v and u.As illustrated in Fig.6(a), if
an adjacent sampled node u and the current node v are on the
same iso-surface in Γ, then the two nodes should both be on
the same target surface or be given the same segmented label;
otherwise, if an adjacent sampled node u′ and the current node
v are on different iso-surfaces in Γ, the same target surface
may be detected between them.

In this phase, the initial surface ia the adapted liver mesh
Ψτ by using the model adaptation algorithm. The weighted G
is constructed by using Algorithm 2, detection of the target
surface is then formulated as finding a minimum cut.This can
be solved by the max-flow/min-cut algorithm [6]. The process
can be iteratively employed to search the desirable surface of
the liver based on the previous adapted liver mesh Ψ

′

τ . The
algorithm is stopped when the distance between the adapted
liver meshes Ψτ and Ψ

′

τ is lower than a threshold value Ed.
Results of the extracted liver surface are shown in Fig. 7, as
optimized from the initialized shape in Fig. 5.

TABLE I
PARAMETER SETTINGS

Steps Parameter Settings

Preprocessing
Landmarks V = 2502,

M = nf = 30 for SLIVER07,
M = nf = 20 for 3Dircadb,
λa = 10, ta = 0.03, na = 4;

Model Initialization
ro = 2, rc = 10, κ = 125

nj = 20, nt = 5, ω = 1, Et = 0.001;

Deformable Graph Cut
pd = 0.5, Nc = 10, ts = 40, Ng = 20,

∆k = 2, χ = 10, σd = 0.5,
σs = σt = σu = 1, Ed = 0.01.

VII. EXPERIMENTAL RESULTS

A. Evaluation Methods

1) Subject Data: To evaluate the accuracy and performance
of the proposed method, it was tested on two clinical contrast-
enhanced CT data sets, which are publicly available. The
first data set was SLIVER07 1, which contains 30 contrast-
enhanced CT images (20 training scans and 10 test scans).
The pixel size varied from 0.54 to 0.86 mm, slice thickness
from 0.7 to 5 mm, in-plane resolution of 512×512 pixels, and
slice number 64 to 502. The second data set was 3Dircadb 2,
which contains 20 contrast-enhanced CT images. The pixel
size varied from 0.56 to 0.86 mm, slice thickness from 1
to 4 mm, and slice number 184 to 260. The ground truth
was provided by experienced experts. The two sets were
alternatively chosen as the training set and test data.

1http://sliver07.org/download.php
2http://beta.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php?–lng=en
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2) Evaluation metrics: To quantitatively evaluate the per-
formance of our proposed method, we compared the segmen-
tation results with the ground truth according to the following
five volume and surface based metrics [41]: volumetric over-
lap error (VOE), signed relative volume difference (SRVD),
average symmetric surface distance (ASD), root mean square
symmetric surface distance (RMSD), and maximum symmet-
ric surface distance (MSD). The volume and surface based
metrics are given in percent and millimeters, respectively. For
all these evaluation metrics, the smaller the value is, the better
the segmentation result.

3) Parameter Settings: In this section we will review de-
tailed parameter settings for each step, where Table I lists
all of the parameter settings. The number of landmarks and
vertices of the initial shape model was V = 2502. The
mean shape model of SLIVER07 was obtained from manual
segmentation by experienced experts and applied to 3Dircadb
for shape adaptation; The mean shape model of 3Dircadb
was obtained from manual segmentation by experienced ex-
perts and applied to SLIVER07 for shape adaptation. During
smoothing by curvature anisotropic diffusion filtering, the
conductance parameter λa was set at 10, the time step ta
was around 0.03, and the number of iterations nawas typically
set to 4. Apply morphological opening with round structuring
elements (ro = 2) to remove small structures, and then
apply morphological closing with round structuring elements
(rc = 10) to connect the disjointed regions or fill holes.
κ = 125 typically can control the balance between region
and surface constraints. In our experiments, the voxel spacing
range was 0.54mm to 5.0 mm, nm = 20 and nt = 5 were
appropriate to efficiently deform the initial surface. For the
consideration of memory, the number of sampling points Ng
was set 40, since the initialized mesh was remeshed and
subdivided into dense meshes with about Vm = 40002 vertices
(ts = 40) for the accurate detection of the target surface using
the proposed deformable graph cut. The standard deviations
of the intensity σs, σt, σu were set at 1. The interval for
the standard deviation of the distance differences σd can be
[0.1, 2], or typically 0.5. The balance parameter χ was set at
10. The parameters described in this section were determined
experimentally, but the detection was not very sensitive to their
exact values. The values described here were mainly motivated
by performance considerations. Our method was implemented
in C++ and tested on a 32-bit desktop PC (3.1 GHz Core(TM)
i5-3450 CPU and 4 GB RAM).

B. Validation Results

1) Case Study: During the experiments, the EDT based
method can be successfully applied to quickly localize the
coarse position of the liver. Fig.8 shows the whole process
using the proposed method in a CT image of the abdomen
and chest in database Sliver07. The initialized surface and final
surface are shown in Fig.8 (c) and (d) respectively.

Fig.9 (a)-(e) shows the mean shape model was iteratively
adapted to boundary of the liver. The green curves were
manual segmentation. The yellow curve in Fig.9 (a) is the
mean shape using the EDT based method. The surface was

far from the boundary of the liver and part of the model was
in the exterior of the liver. In the first iterations of model
adaptation, the shape model was adjusted to the boundary of
the right hepatic lobe and then driven to the boundary of the
left hepatic lobe. However, it is difficult to detect boundaries of
sharp structures in both the right hepatic lobe and left hepatic
lobe. On the one hand, model adaptation was constrained by
a PDM from statistical shapes, which can not contain enough
shape variability of the livers; on the other hand, the model
was adapted along its normal direction which was difficult to
reach along those boundaries of the sharp structures.

Fig.9 (f)-(h) shows iterations using the deformable graph
cut. To detect target boundaries of livers more accurately, the
proposed deformable graph cut can detect target boundaries
with consideration of a region cost and boundary cost. As can
be seen in Fig.9 (f), the smooth surface was detected. With
the integration of shape prior, the surface was progressively
adapted to the target boundaries even if structures were sharp.
This is because the mesh was remeshed and adjusted along a
deformable distance field.

2) Effect of Different Parameters: Fig.10 shows the impact
of shape σd of the deformable graph cut. Fig.9 (f)-(h) shows
segmentation using different values σd = 1, 0.5, 0.3. As the
value becomes larger, segmentation tends to include non-
hepatic tissues with similar intensity, which often occurs
using the traditional graph cut. As can be seen in this test,
the proposed deformable graph cut can control the balance
between the region and boundary by the integration of shape
prior more robustly, as illustrated in Fig.6(a).

3) Challenging Cases: Fig.11 shows three challenging cas-
es. The first row shows the segmentation of a CT image
from database 3Dircadb. There are 20 tumors in this CT
image. Besides, numerous sharp regions and divided lobes
exist, as can be seen in Fig.11(a). As shown in Fig.11(a)-(b),
model adaptation can be applied to reach most of the target
boundary. Some sharp structures were lost in the left lobe
and near the vessel. The maximal distance to target boundary
was 21.82mm. With the help of deformable graph cut, those
sharp structures can be included, as shown in Fig.11(c)-(d).
The maximal distance to the target boundary decreased to
18.87mm. The second row shows the segmentation of a CT
image from database Sliver07. As shown in Fig.11(c), the
subject was laid on one side, which led to a large rotation
with regard to the mean shape model. Besides, a large gap
also exist. These two difficulties made it difficult to reach
the boundary of the left lobes for the shape model based
adaptation method, which led to 52.38mm of the maximal
distance to the target boundary. After the initial surface was
adapted using the deformable graph cut, the maximal distance
was decreased to 19.25mm, as shown in Fig.11(h). The third
row shows the segmentation of a CT image from database
3Dircadb. There are 2 large tumors in this CT image. As
can be seen in Fig.11(i), model adaptation stopped moving
towards the boundary of the liver. Large surface difference was
generated between the initialized liver and manual segmented
liver near the regions of the tumors as shown in Fig.11(j). The
distance was then decreased to 34.59mm using the proposed
deformable graph cut as shown in Fig.11(l).
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0 25.22

(a) (b) (c) (d) (e) (mm)

Fig. 8. Liver initialization and segmentation in a CT image of abdomen and chest. (a) The red curve represents preprocessed boundaries; (b) Moved shape
model (yellow surface) using an EDT based method; (c) Initialized liver based on model adaptation (blue curve); (d) The red curve represents final segmentation
of liver, the green curve represents ground truth; (e) The surface distance of corresponding liver final segmentation to manual segmented liver surface.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Iterative initialization based on model adaptation and segmentation using the deformable graph cut in a CT image in Sliver07 Database. Manual
segmentation is shown in green curves. (a) Moved mean shape model (yellow curve); (b)-(e) The 1st, 3rd, 7th and 11th iterations of model adaptation (blue
curves); (f)-(h) The 1st, 2nd and 5th iterations of the deformable graph cut (red curves).

(a) (b) (c) (d)

Fig. 10. The parameter σd of deformable graph cut. (a) Initialized liver based on model adaptation (blue curve); (b)-(d) σd = 1, 0.5, 0.3 using deformable
graph cut (red curves).

4) Quantitative Results and Comparisons: To assess the
performance of the proposed liver segmentation framework
within the larger context of the existing literature, two tests
were done to compare it with recently published methods
based on the Sliver07 database and 3Dircadb database. Re-
sults for each measure represent as the mean and standard
deviations of the overall datasets.

Table II shows the quantitative comparative results of the
liver segmentation with previous methods in [17], [18], [26],
[42], [43] and the proposed liver shape initialization and
segmentation based on the Sliver07 database. As can be seen
in the 6th row of Table II, model initialization was far from the
accurate segmentation of the liver. Large distance to manual
segmentation can be seen in the measures of ASD, RMSD
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Fig. 11. Some challenging cases. Manual segmentation is shown in green curves; initialization is shown in blue curves, final segmentation is shown in
red curves. The first column shows initialization based on model adaptation; the second column shows distance between the initialized surfaces to manual
segmented surfaces; The second shows segmentation using deformable graph cut; the fourth column shows distance between the final detected surfaces to
manual segmented surfaces. The images in the 1st and 2nd rows are from Sliver07 Database, the image in the 3rd are from 3Dircadb Database.

TABLE II
QUANTITATIVE COMPARATIVE RESULTS FOR THE SLIVER07 DATABASE. RESULTS ARE REPRESENTED AS MEAN AND STANDARD DEVIATION. NA

STANDS FOR INFORMATION NOT AVAILABLE.

and MSD. The SVRVD was −9.29%± 8.58%, which means
that it tends to under-segment the liver tissue, as shown in
Fig.8-Fig.11. For all the datasets, our method achieved much
better performance than Kainmüller’s method even though
they employed an SSM based approach.

As can be seen in the 4th row, Chen’s method tended to ob-
tain a under-segmented liver based on their shape constrained
graph cut (the 2nd column of Fig.12), which integrated shape
prior into region term only. The maximal surface distance
of Zhang’s method is 24.8mm. Surface detection proposed
by Zhang et. al. was applied along the normal direction

of surfaces, which also made it difficult to avoid under-
segmentation and over-segmentation, as shown in the 3rd
column of Fig.12.

Table III shows the quantitative comparative results of the
liver segmentation with previous methods in [44]–[46] and the
proposed liver shape initialization and segmentation based on
the 3Dircadb database. For shape initialization results, model
initialization was also far from accurate segmentation of the
liver. Similarly, large distance to manual segmentation could
be seen in the measures of ASD , RMSD and MSD, as can
be seen in the 4th row of Table III. For all of the datasets,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 12. Segmentation Comparisons in Sliver07 Database. Manual segmentation is shown in green curves. The first column shows initialization based on the
model adaptation method; The 2nd column shows segmentation by using Chen’s shape constrained graph cut; The 3rd column shows segmentation by using
Zhang’s graph search; The 4th column shows segmentation by using proposed deformable graph cut.

the proposed method achieved much better performance than
Chung’s method except for MSD. With regards to SRVD,
Chung’s method and Kirschner’s method tended to under-
segment livers since there were numerous tumors in those
CT images. A large MSD of Kirschner’s method achieved
34.6mm±17.7mm. For most measures, the proposed method
showed slightly better performance than Kirschner’s method
and Erdt’s method.

Table II and Table III also showed the running time of the
testing stage (i.e., shape initialization and final segmentation).
With regards to the Sliver07 database, the average computation
time of the proposed method was about 5min. With regards to
the 3Dircadb database, the proposed method took about 3min.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, a novel approach has been proposed for
automatic liver segmentation, which effectively integrates the

shape based initialization and the deformable graph cut method
with incorporation of shape constraints. This approach is able
to tackle the problems brought on by the special characteristics
of the liver’s anatomical structure and image quality. To
demonstrate higher performance, the proposed method was
evaluated on 50 CT scan images, which are publicly available.
The experimental results showed that the proposed method
was effective and accurate for progressive detection of the
liver surface. Compared to previous methods, the proposed
method can detect the hepatic surfaces more accurately, and
can successfully cope with under-segmentation and over-
segmentation.

In order to make the proposed method automatic, a heuristic
and fast EDT based method was applied to estimate the coarse
position of the liver in a test image. As can be seen from
the experiments on the two public databases Sliver07 and
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TABLE III
QUANTITATIVE COMPARATIVE RESULTS FOR THE 3DIRCADB1 DATABASE. RESULTS ARE REPRESENTED AS MEAN AND STANDARD DEVIATION. NA

STANDS FOR INFORMATION NOT AVAILABLE.

3Dircadb, this approach was able to move the mean shape
model correctly. In order to drive the mean shape model close
to the boundaries of the livers, the initial mesh was locally
and iteratively deformed to the target boundary, which was
constrained to stay close to a subspace of shapes describing
the anatomical variability. In order to detect the liver surface
more accurately, the proposed deformable graph cut could
effectively integrate the properties and inter-relationship of
the input images and initialized surface, which allowed the
progressive finding of the target surface of the liver in a narrow
band with a minimal cost algorithm.

There are three differences between the proposed de-
formable graph cut and Chen’s method [26]. 1) Compared
to Chen’s method, shape constraints were integrated into
boundary term, which also improves the power of boundary
constraints. As can be seen in Fig.12, incorrect boundaries
of the livers were found by using Chen’s method, which
may produce under-segmentation or over-segmentation. 2)
Traditionally, n − links bidirectionally connected adjacent
nodes, which is suitable for region segmentation. The inter-
column and intra-column arcs were introduced such that the
surfaces of the livers were definitely detected in each column.
This improves the power of boundary constraints. 3) Each
node corresponded a voxel in the test image in Chen’s graph,
which will consume huge amount of memory as resolutions
of CT images increase, as pointed in [21], [38]. The proposed
method sampled a few voxels by linear interpolation in a
narrow band of the initial surface, which may need less amount
of memory, as discussed in our previous paper [38].

There are also three differences between the proposed
deformable graph cut and graph search method [18], [19].
1) The intra-column arcs were bidirectional. This encour-
ages the connection of adjacent columns and avoids under-
segmentation as shown in Fig.12(c) and (g). 2) Compared
to graph search, each node in the graph connected both S
and T in the proposed method. Nodes with positive weights
only connected S, while those with negative weights only
connected T in graph search. This strategy may reduce the
region constraints. This may lead to under-segmentation by
using graph search, as shown in Fig.12 (c), (g) and (o). In
addition, weights of the arcs were set to infinity when the
nodes on the top and bottom of the graph were connected S
and T respectively, or the distance was larger/smaller than
dmaxdmin. This can avoid under-segmentation, though the

initial surface is far from the target boundary, as shown in
Fig.12(p). 3) The proposed method can integrate boundary
constraints. In most of applications, the wights of inter-column
and intra-column were set to infinity, which makes it difficult
to utilize shape prior. When the search bound has more
strong edge responses, the strong boundary may be detected
by using graph search, as shown in Fig.12(k)(the green arrow).
However, the proposed method can detect the surface of the
liver correctly.

Although encouraging results have been achieved, segmen-
tation accuracy needs to be improved (see Table II and Table
III). As can be seen in Fig.11, a large surface distance often
occurred in the connection of the liver and vessels. It is
important to take into account more special characteristics of
the liver’s anatomical structure. Therefore, larger training data
sets need to be collected to learn more shape variability and
preserve shape deformation.
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