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During the resting state, in the absence of external stimuli or goal-directed mental tasks, some functionally related
discrete regions of the brain show complex low-frequency fluctuations in the blood oxygenation level dependent
signal. Here we developed a novel ROI-basedmultivariate statistical framework to obtain the fine-grained patterns
of functionally specialized brain networks in the resting state. Under this framework, the weighted-RV method is
proposed and used to detect the spatial fine-scale patterns of functional connectivity. This approach overcomes
severalmajor problems of the traditional resting-state data analysismethods such as Pearson correlation and linear
regression analysis. By using simulation and real fMRI experiment, we have found that the weighted-RVmethod is
shown to be more sensitive in detecting the fine-scale based low-frequency connectivity even at a very low
functional contrast-to-noise ratio (CNR), and this method can achieve much better performance in mapping the
fine-grained patterns of functionally specialized brain networks compared to the traditional methods.
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Introduction

Recent studies have found that, in the absence of external stimuli or
goal-directedmental tasks, several functionally related discrete regions of
brain show spontaneously synchronized low-frequency fluctuations in
the blood oxygenation level dependent signal. These synchronized
fluctuations suggest the existence of complex functional connectivity
between these discrete local regions and fine-grained patterns of
functionally specialized brain network in resting state (Biswal et al.,
1995; Lowe et al., 1998; Xiong et al., 1999; Greicius et al., 2003; Fox et al.,
2005; Beckmann et al., 2005; Nir et al., 2006; Achard et al., 2006;
Damoiseaux et al., 2006). By using region of interest (ROI)-based analysis
method, a set of functionally specialized resting-state networks (RSN)
havebeen identified, suchas themotornetwork (Biswal et al., 1995; Lowe
et al., 1998; Xiong et al., 1999), the visual network (Lowe et al., 1998), the
language network (Hampson et al., 2002), the default network (Greicius
et al., 2003), and the anti-correlated functional networks (Foxet al., 2005).

Traditional ROI-basedmethodsmeasure the correlationbetween the
BOLD time course from a seed region and the time course from all other
voxels in the brain. The measure of the correlation is based on Pearson
correlation coefficient (Fox et al., 2005) or the linear regression
parameter (Greicius et al., 2003). These analysis methods are widely
used owing to their sensitivity, simplicity, and ease of interpretation.
However, they also have some problems. To gain better insight into the
resting neural network, it is important to investigate the connectivity
information of the functional brain regions at multiple spatial scales,
especially atfinescale (Margulies et al., 2007;Cohenet al., 2008). Thefine-
scale information allows for understanding the functional-connectivity
information in a highly localized fashion. The traditional ROI-based
correlation analysis such as Pearson correlation and linear regression
analysis are based on voxel-by-voxel calculation. Since the functional
brain regions are usually clustered together and regionally rendered
homogeneous (Zanget al., 2004), suchfine spatial structure information is
lost during this univariate analysis process. In addition, for a variety of
reasons, fMRI data contain a large amount of spatial random noise, and
univariate analysismethod is highly susceptible to the noise. This leads to
a salt-and-pepper-like connectivity map when using conventional
methods, such as Pearson correlation and linear regression. In order to
suppress the spatial noise, the fMRI volumes are often smoothed before
performing the correlation analysis. However, as a consequence, this
strategy also makes the connectivity map blurred and obscure or even
loses the fine-grained functional connectivities between different nearby
regions.

Howtofindawin–win strategy to extract thefine-grained structureof
the connectivity patterns aswell as to suppress the spatial randomnoise?
In this study, we aimed to improve the ROI-based method by proposing
a multivariate statistical framework for analyzing the functional
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connectivity of the brain network during the resting state. Within this
framework, themultivariate statistic ofRVcoefficient is employed. TheRV
coefficient was firstly introduced by Robert and Escoufier (1976)
(Escoufier, 1973). This multivariate statistic provides a very efficient
way to measure the similarity between two sets of variables with the
same number of sample observations (Abdi, 2007). In the present study,
we use RV coefficient to measure the spatial connectivity patterns
between the region of interest and each local region of the whole brain.
For suppressing the spatial noise while keeping the spatial features, we
generate an adaptive anisotropic weight template, borrowing the idea of
bilateral filtering in imaging processing (Tomasi and Manduchi, 1998).
The weight template is then added to the multivariate framework. The
advantage of using this multivariate method is that the connectivity
calculation is more consistent with the hypothesis that the function-
homogeneous voxels of brain volumeare spatially clusteredwithin a local
region (Zang et al., 2004). Similar strategies have ever been proposed and
have been used in detecting brain activity. For example, Friman et al.
(2003) used a steerable filter and the multivariate statistical model of
canonical correlation analysis (CCA) to adaptively detect local activity
patterns. Kriegeskorte et al. (2006) used a searchlight and multivariate
statistic of Mahalanobis distance to detect the response patterns within
each local region. While in the present study, we focus on the fine-scale
pattern of connectivity analysis.

In this study, we used simulation and real fMRI data to explore
whetherourmultivariate statistical frameworkwithweighted-RVstatistic
can be used to maintain fine-scale spatial functional-connectivity
information and at the same time reduce the influence of spatial random
noise. We aimed to ascertain whether our method is particularly more
sensitive than the traditional ROI-based univariate method in detecting
thefine-scale patterns of low-frequency resting-state connectivity at very
low functional contrast-to-noise ratio (CNR).
Methods

The multivariate framework for the analysis of functional connectivity

To investigate the intensity of functional connectivity of each brain
location with a particular region of interest (ROI), a continuous
functional-connectivity map is needed. Similar to the “searchlight”
Fig. 1. Themultivariate framework for the analysis of the functional connectivity. The yellow
blue region surrounded by the red closed curve is one of the local regions falling into the sea
each location, the multivariate similarity is measured between the time course from the vo
used by Kriegeskorte et al. (2006), we obtain a search cube centered
on a particular voxel. The cube contains multiple neighboring voxels
with a particular size and shape.Wemove the cube through the entire
measured brain volume, voxel by voxel. At each location, we measure
the multivariate similarity between the time course from the voxels
falling into the search cube and the time course from the voxels within
the particular ROI. We can map the connectivity patterns of different
spatial scales by choosing the search cube with different sizes and
shapes (see Fig. 1).

To measure the similarity between two sets of multi-voxel time
course, we use themultivariate statistic of RV coefficient. RV coefficient
can be described as

RV X;Yð Þ =
tr XXtYYt
� �

tr XXtXXt
� �1

2 × tr YYtYYt
� �1

2
: ð1Þ

Two other equivalent formulas of RV-coefficient calculation are as
follows:

RV X; Yð Þ =
tr YYt XXt
� �
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2 × tr YtYYtY
� �1
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ð2Þ
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where X and Y are n×p and n×q matrix from two data sets, which
involve p and q numerical variables respectively on the same sample
of n individuals, Xt is the transpose of matrix X, and tr(⋅) is the trace
operator of square matrix.

When p=q=1, the RV coefficient is the square of the Pearson
correlation coefficient between the variables X and Y. When X is a single
variable, and Y contains q(qN1) variables, RV coefficient can be seen as
an extension of the multiple correlation coefficient between X and the
variables in Y. Many singular value decomposition (SVD)-based
multivariate statistical methods, such as PCA (principal component
analysis), CCA (canonical correlation analysis), MLM (multivariate
linear regression analysis), PLS (Partial least square model analysis)
region surrounded by the red closed curve is the predefined region of interest (ROI). The
rch cube. The search cube is moved through the entire brain volume voxel by voxel. At
xels within the search cube and the time course from the voxels within the ROI.



2887H. Zhang et al. / NeuroImage 54 (2011) 2885–2898
and discriminant analysis can also be generalizedwithin the framework
of RV-coefficient problem (see also the Appendix B).

The value of RV coefficient ranges from 0 to 1. If RV coefficient is 0,
the two sets are independent, which means there is no correlation or
similarity between the two data sets. If RV coefficient is 1, the eigen
components of data set X can be derived from Y through a homothetic
transformation, whichmeans that there exists a rotationmatrixH and
a scaling factor c such that cXH=Y. For RV calculation, X and Ymust be
mean centered by column first.

Multiple distance measure can also make use of the statistic of RV
coefficient (Robert and Escoufier, 1976). For example, one kind of
distance can be defined as:

D X; Yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1−RV X;Yð Þð Þ

p
ð4Þ

where D(X,Y) is the multiple distance between X and Y.
The RV coefficient's similarity measure and distance measure have

already been successfully applied in analyzing fMRI data (Abdi et al.,
2005, 2009; Abdi, 2007; Kherif et al., 2003; Shinkareva et al., 2006). Abdi
et al. (2005, 2009) usedRVcoefficient to evaluate the similarity between
distance matrix units in their multidimensional scaling method. Abdi
(2007) also used RV coefficient to directly measure the similarity
between two sets of multi-voxel time course. Kherif et al. (2003)
adapted the RV coefficient with experimental paradigm and multidi-
mensional scaling to investigate intersubject distances with respect to
the comparison between activation and control. In Shinkareva et al.'s
(2006) classification study, RV coefficient was used to generate
dissimilarity maps for feature selection. While in the present study,
we use RV coefficient to measure the spatial connectivity patterns
between the region of interest and each local region of the whole brain.

The multivariate framework in this paper focuses on the analysis of
fMRI data's local multi-voxels. Many local multivariate methods,
based on their superior statistical properties than that of traditional
univariate methods, have been used to analyze local region's spatial
activation/connectivity pattern. In Friman et al. (2003)'s adaptive
analysis method, CCA was used to automatically select each local
region's optimal hemodynamic response and spatial filters under the
prior constraint of a set of spatial basis functions and temporal functions.
Harrison et al. (2003) use multivariate autoregressive (MAR) model to
characterize the connectivity between a pair of local regions. Besides
their different applications, the common purpose of these multivariate
models is to use different constraint-condition (or called “prior
knowledge”) to obtain the suitable solutions for the model.

Weighted-RV for spatial fine-scale based temporal similarity measure

The RV coefficient is superior to the Pearson correlation coefficient
in measuring the temporal similarities of two local brain regions: it
combines information from local multi-voxels while maintaining the
information about the fine-grain structure of the local region's spatial
activation patterns. However, it is problematic to apply the RV
coefficient directly tomeasure similarities between two brain regions:
to maintain the fine-scale spatial information, the data cannot be
smoothed; however, if smoothing is omitted, the spatial randomnoise
in the data can significantly affect the detection performance of
the fine-scale connectivity. There is another problem: within each
localized search cube, the importance of all voxels is equal. Thismeans
that when we measure the similarity between the time course from
ROI and the time course from a voxel-centered neighboring region,
the importance of the central voxel will not be highlighted and
weighted by the direct use of RV coefficient. This limitation can cause
the boundaries of the functionally connected region to extend and
the whole-brain connectivity maps become blurred. This point is
illustrated in Fig. 1. In Fig. 1, the voxel c is located in the center of the
search cube (the green region), the voxels u, v and w are involved in
the cube but are located near the edge. If the center voxel c has very
weak synchronization of low-frequency oscillation with the ROI
(the yellow region) in time course, while the voxels u, v and w have
very strong synchronization of low-frequency oscillationwith the ROI,
the resulting connectivity map at voxel c is overestimated, and the
similarity criterion is biased.

To address these two problems simultaneously, we borrow the idea
of bilateral filtering (Tomasi andManduchi, 1998; Rydell et al., 2006) in
image processing. We gave different weights to the voxels within the
search cube.Wegenerate aweight template every timewhen the search
cubemoves to anew location. The size and shape of theweight template
are the same as the search cube.We then add the template to the voxels
within the search cube for the RV similarity measure. The generation of
the weight template is based on two criteria: Euclidean distance to the
central voxel and similarity of time coursewith that of the central voxel.
According to these two criteria, we define two functions: the distance
function Fd(i, j) and the similarity function Fs(i, j):

Fd i; jð Þ = Fd dEU i; jð Þð Þ ð5Þ

Fs i; jð Þ = Fs dRV gi; gj
� �� �

ð6Þ

dEU(i, j) is the Euclidean distance between the voxel i and j. We specify
(ix, iy, iz) and (jx, jy, jz) as the three-dimensional coordinate of voxel i
and voxel j, then

dEU i; jð Þ = ix−jxð Þ2 + iy−jy
� �2

+ iz−jzð Þ2Þ
� �

1
2 ð7Þ

A simple and practical application of the distance function Fd(i, j) is
isotropic Gaussian function, which can be denoted as:

Fd i; jð Þ = 1
kd

e
−1
2

d2EU i; jð Þ
σ2
d

 !
ð8Þ

kd is the normalization constant of Fd(i, j). σd is the standard deviation
of the Gaussian kernel. The farther the distance of the voxel i and the
voxel j, the smaller the value of the function Fd(i, j). If we set voxel i as
the central voxel in the region, this explicit expression of the closeness
function Fd(i, j) will give more weight to the central voxel and less
weight to its neighboring voxels.

dRV(gi,gj) is RV dissimilarity measure which can be seen as another
kind of distance between the observations of voxel i and j:

dRV gi; gj
� �
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gi, t is the intensity of the voxel i at the observation of volume t.
Again, we use the Gaussian-type function, the similarity function

Fs(i, j) can be specified as:

Fs i; jð Þ = 1
ks

r gi; gj
� �

e

−1
2

d2RV gi; gj
� �
σ2
s

0
@

1
A

ð10Þ

ks the normalization constant of Fs(i, j). σs is the standard deviation of
the Gaussian kernel. r(gi,gj) is the Pearson correlation coefficient. If
the time course of voxel i and voxel j are highly similar, the value
of the function is high, and the value approaches 1; on the contrary, if
the time course of voxel i and voxel j are dissimilar and negatively
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correlated, the value of the function approaches−1. Assuming voxel i
is at the center of the search cube, this function will give more weight
to the voxel j if it is more similar to voxel i at time course and less
weight to voxel j if the two time course is dissimilar.

Then, functions (8) and (10) are combined into a new Gaussian-
type function:

Fi jð Þ = Fd i; jð Þα⋅Fs i; jð Þβ

=
1
k
r gi; gj
� �

e
−1

2

α ðix−jxÞ2 + iy−jy
� �2

+ ðiz−jzÞ2
� �

σ2
d

+
2β 1−RV gi; gj
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σ2
s

0
BB@

1
CCA

ð11Þ

In function (11), k is the normalization constant, which guarantee
the discrete values of the Gaussian-type filter kernel add up to 1. The
parameters α and β are used for balancing the effect of distance
function and similarity function. The values of α and β range from 0 to
1, where 0 means no effect and 1 means full effect. If we want to put
more emphasis on keeping homogeneous structure information
within the searchlight and less emphasis on smoothing the data, we
give larger value of α and smaller value of β, and vice versa.

In general, the weighted-RV calculation between the time course
from ROI and the time course from central voxel i based each local
region can be described as:

WPRV ið Þ = RV X;YFð Þ ð12Þ

Here,

F =

Fi 1ð Þ 0 … 0
0 Fi 2ð Þ …
… … 0
0 … 0 Fi qð Þ

2
664

3
775

X is n×pmatrix fromROI, and Y isn×qmatrix fromcentral voxel i based
neighborhood, F is q×q diagonal matrix which can be calculated using
Formula (11).

The generation of the weight template is based on the numerical
expressionof the function (11) (see Fig. 2). Since the template combines
the criterionof the spatial distance and the similarity of two voxels' time
course, it can efficiently discriminate the spatial fine-scale feature
information from the spatial random noise. Considering a 3×3×3
search cube centered on voxel j, we use function (11) to generate a
3×3×3 weight template. The voxels within the search cube are
weighted differently according to the weight template. We use the RV
coefficient to measure the similarity between the time course from the
weighted voxels of the local region and the time course from the region
of interest. To obtain a continuous functional-connectivity map, the
cube is moved and centered on each voxel of the brain volume in turn.
This method suppresses the spatial random noise and extracts the
spatial connectivity information simultaneously. It can theoretically
more efficiently detect the fine-grained structure of the functional-
connectivity patterns. It should be noted that we select a cubic box
window (search cube) sliding across the 3-dimensional volume. In fact,
a cubic box window will produce absolutely identical results to a
spherical window if the box window's side-length is identical to the
spherical window's diameter. As for the search cube we use in our
method, the voxels near the edge of the cube are always weighted zero
in theweighted template, whichmeans these voxels are never included
as the filter passes across the whole volume.

Test for the significance of the RV coefficient

The distribution of the RV coefficient is unknown and thuswe donot
know a critical value to statistically test for similarity. The common
strategy is to use no-parametric permutation test. However, due to the
large number of observations in the fMRI data, exact permutation test is
extremely time consuming (Mardia, 1971; Mielke, 1978, 1979; Hamani
and Yves, 2007; Kubinger et al., 2007). Randomly sampling from
the space of all possible permutations seems practical. In this case,
however, the exact p-value depends on the number of random samples
(Abdi, 2007; Josse et al., 2008).

In order to approximate the exact p-value as well as to reduce the
computational intensity, a new statistic of normal distribution is
approximated by log-transforming the first two moment of the RV
coefficient's permutation distribution.

Z = log RV X;Yð Þ
� �

−Eperm log RV X;Yð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vperm log RV X;Yð Þ

� �� �r ð13Þ

The log-transformation of the RV permutation distribution is
suggested as a better normal approximation to obtain the real p-value
without having to perform actual permutation (Heo and Gabriel, 1998;
Josse et al., 2008) (see also the Appendix A). Thus, the computation cost is
rather small. We adapt this z-distributed statistic to approximate the
weighted-RV-coefficient map and test its significance. Finally, we adjust
the significance levels using the FDR to solve the multiple comparison
problems.

Simulated fMRI data

A simulation study was performed to compare the detecting
performance of our weighted-RV method and the traditional ROI-
based methods. To do so, the simulated resting-state fMRI data was
generated in which the commonly used functional contrast-to-noise
ratio (CNR), the temporal autocorrelation of the fMRI noise and the
shape of the local regions with similar low-frequency fluctuations
were known beforehand.

The description of the simulation

To generate the simulated data, we identify a priori the following:
the foreground effect signals, five irregular shaped effect regions, and
background noises. The foreground effect signal was extracted from
actual EPI series which contain 200 observations (time points). The
signal was then band-pass filtered within the range of 0.01–0.08Hz to
simulate the low-frequency fluctuations of the BOLD signals in the
resting state. We then varied the signal's phases between −4 to 4 TR
to simulate different onsets of the hemodynamic responses. The time
course of the background noise was generated by making use of the
fractional Gaussian noise (fGn) model (Maxim et al., 2005), and the
Hurst exponentwas used to characterize the temporal autocorrelation
of the fMRI time signal. The background noise was a time course of a
3-dimensional volume, which had the same number of observations
as that of the foreground effect signals. For each volume, TR=2s,
slice=20, voxel sizes=2×2×2 mm, matrix=64×64.

Five irregular shaped effect regions were created by making use of
the region growing method. These local regions comprised of 10, 30,
90, 180 and 270 voxels respectively. These five irregular shaped local
regions were embedded in different places of the background volume.
Within these local regions, the foreground effect signals with varied
TR value were added to the background noise at different functional
contrast-to-noise ratio (CNR). The functional contrast-to-noise ratio
(CNR) was defined as the spatial average within the effect region of
the absolute activity level at the maximum of the hemodynamic
response divided by the temporal standard deviation of the noise. The
foreground signals were associated with fine-scale patterns of weak
connectivity effect presented in the real fMRI data. Outside these
regions, there were no foreground effect signals and only background
noises (Fig. 3).



Fig. 2. The weight template is constructed by multiplying the distance template with the similarity template. The distance template is generated from isotropic Gaussian function
(see Formula 8), which has moreweight in the central voxels and less weight at the edge. The similarity template is generated from a Gaussian-type similarity function (see Formula 10),
which has more weight to voxels if they are more similar to the central voxels at time course and less weight to voxels if they are dissimilar to the central voxels at time course.
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Analysis of the simulated data

The following four types of analytic methods were used to map the
whole-brain functional connectivity:

(1) Pearson correlation analysis on unsmoothed fMRI data
(2) Pearson correlation analysis on smoothed fMRI data
(3) Direct RV analysis on unsmoothed fMRI data
(4) Weighted-RV analysis on unsmoothed fMRI data

InMethods (2) (“Methods (2)”here represent a class ofmethodswith
varied Gaussian kernel), the full width at half maximum (FWHM) of the
Gaussian kernel for smoothingwere 4 mm, 6 mmand8mmrespectively.
Fig. 3. The simulation of fMRI data during the resting state. In this simulated data, five irreg
embedded in the 3-dimensional background noise. Within the local regions, the time course
contrast-to-noise ratios (CNR). Outside these regions, there is no foreground effect signal b
The variances of all Gaussian kernels were 1. In Methods (3) (“Methods
(3)” represent a class of methods with varied search cube) and Methods
(4), the size of the search cubes were 6 mm×6mm×6mm (3×3×3
voxels), 10 mm×10 mm×10 mm (5×5×5 voxels) and 14 mm×
14mm×14mm (7×7×7 voxels). The values of σd, σs, α and β were
set to 1. These parameter sets guaranteed the Gaussian kernel for
smoothing in Methods (2) to be corresponding to the search cubes in
Methods (3) and (4). For the simulated data, we set the constant value
of the Hurst exponent to be 0.8 as generating the background noise, and
this guarantee the time course of fMRI were positively autocorrelated
(Maxim et al., 2005). The functional contrast-to-noise ratio (CNR) was
varied at six different values (CNR=0.1, 0.2, 0.3, 0.4, 0.5, 0.6). Fig. 4
ularly shaped local regions with similar low-frequency fluctuations are predefined and
is the mixture of foreground effect signal and background noise at different functional
ut only background noise.

image of Fig.�2
image of Fig.�3


Fig. 4. The effect regions of the 3-dimensional simulated data in the middle slice. The
red regions show that these regions have similar low-frequency fluctuations at time
course. The blue region shows that there is only background noise content and has no
effect.
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shows the five irregular local regions with low-frequency functional
connectivity in the simulated data. The local region 2 containing 30
voxels was selected as the region of interest during the analysis.
Results of simulation

Fig. 5 shows the unthresholded mapping results obtained with
different methods for the simulated fMRI data (CNR=0.4). It can be
seen that the Pearson correlation analysis without any smoothing of
the data (i.e., Method 1) could detect some voxels which have
connectivity with the region of interest, while the connectivity maps
show a severe salt-and-pepper phenomenon (Fig. 5A). This is
inconsistent with the hypothesis that the functional region of the
brain is clustered and locally homogeneous (Zang et al., 2004).

The Pearson correlation analysis on the smoothed fMRI data
(i.e., Methods (2)) resulted in focal regions in the connectivity map.
However, the fine-scale connectivity information within the map was
somewhat lost, and the boundaries of the connected regions related to
the regions of interest were blurred and ambiguous (Fig. 5B). This
suggests that although smoothing the data with Gaussian kernel
could suppress the spatial noise and improve the homogeneity of
nearby voxels, it had the difficulty in distinguishing the signals from the
random noises, rendering the former as the noise and being eliminated
from the final connectivity map. Direct RV calculation on unsmoothed
fMRI data also got clustered effect regions in the connectivity maps
(Fig. 5C), however, similar to the results of Methods (2), the boundaries
of the effect regions in the maps were blurred, and the fine-scale
information of the maps were seriously contaminated. Furthermore,
from themaps we can see that the contrast between the detected effect
regions and background noise were very low, which indicate the low
signal to noise ratio of Methods (3). In contrast, the functional-
connectivity map shown in Fig. 5D illustrates that the weighted-RV
analysis produced relatively the optimal performance at detecting the
fine-scale based local regions which have highly similar low-frequency
fluctuations with the region of interest.

To quantitatively assess how well different methods distinguish
between the effect regions (the five irregular local regions which have
similar low-frequency fluctuations) and the background noise, we use
Fig. 5.Unthresholdedmapping results obtained with different methods for the simulated fMR
analysis on unsmoothed fMRI data. B. The maps obtained with Pearson correlation analysis
σ=1. C. The maps obtained with direct RV analysis on unsmoothed fMRI data with 6 mm×
14 mm×14 mm×14 mm search cube (right). σd=1, σs=1, α=1, and β=1. D. Themaps ob
search cube (left); 10 mm×10 mm×10 mm search cube (middle); and 14 mm×14 mm×1
receiver-operating characteristics (ROCs; Fig. 6). The ROC curve is
defined as the proportion of correctly detected voxels among all
effect-region voxels (the sensitivity) and the proportion of correctly
rejected voxels among all pure-noise voxels (the specificity) at all
possible thresholds. As shown in Fig. 6, the curves of Methods (2) are
at the bottom of all curves, which indicates the worst performance.
This is because smoothing the original fMRI data filters out the fine-
scale information component of the data and reduces the detection
performance. The ROC curves also show that the effect of different
sizes of the Gaussian kernel has on detection performance. The wider
the kernel window, the worse is the detection performance. This is
due to the fact that different Gaussian windows represent the
different levels of low-pass filters with the wider Gaussian kernels
filtering out more information. The curves of Methods (3) are located
above that of Methods (2), and this indicate the direct RV calculation
on unsmoothed data performs better than the traditional Pearson
correlation analysis on smoothed data. Combining the ROC-curve
illustrations with the unthresholded maps of Fig. 5C, we see that the
multivariate RV measure can keep the local structure of the
connectivity patterns and suppress the spatial random noise to a
certain extent, while it does not perform well on detecting those very
subtle connectivity information seriously contaminated by the noise.
The curves of Methods (4) are located on the top of all curves which
indicate the best performance. By combining multiple signals of
neighboring voxels within the search cube, the weighted-RV method
can make full use of the spatial structure information while at the
same time it can effectively suppress the spatial noise.

A few additional points are worth noting. At very low functional
contrast-to-noise ratio (CNR), which means the fMRI data is seriously
contaminated with noise, Methods (4) can still detect some weak
effects of the connectivity patterns, whereas Methods 1, 2 and 3
perform poorly. For Methods (2), the Pearson correlation analysis on
smoothed data with FWHM=4mm achieves the relatively better
performance compared to the other two methods with 6 mm and
8 mm FWHM. This shows once again that wider Gaussian kernels
filter out more fine-grained feature information of the data. Of all size
of the search cubes and analysis methods, the weighted-RV analysis
method with 6 mm×6 mm×6 mm search cube is the most sensitive
and achieves the best performance in detecting the irregular
functional-connected local regions. This is perhaps due to the fact
that the region of interest we chose comprised of 30 voxels, and
this voxel number is closest to the voxel number of the search cube
containing 27 voxels.

Connectivity of the motor cortex in resting state: real fMRI
data verification

Weused real resting-state fMRI data to obtain functional-connectivity
maps with the use of the three methods described above.

Subjects and measurements

Eight healthy subjects (3 male, 5 female, and age from 50 to 67)
participated with informed consent. The study was approved by the
research ethics committee at the Tiantan Hospital.

The experiment consisted of 2 phases. In the first phase, a resting
scan was obtained. Participants who were unaware of the exact ex-
perimental design were instructed to lie with their eyes closed, think of
nothing in particular, and not fall asleep. In the second phase, a right
finger movement task was performed. During this phase, the right
I data (CNR=0.4, Hurst exponent=0.8). A. Themap obtainedwith Pearson correlation
on smoothed fMRI data with FWHM=4mm (left); 6 mm (middle); and 8 mm (right).
6 mm×6 mm search cube (left); 10 mm×10 mm×10 mm search cube (middle); and
tainedwith weighted-RV analysis on unsmoothed fMRI data with 6 mm×6 mm×6 mm
4 mm search cube (right). σd=1, σs=1, α=1, and β=1.
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Fig. 6. The ROC curves for different methods: the curves for Pearson correlation analysis on unsmoothed fMRI data (black); the curves for Pearson correlation analysis on smoothed
fMRI data with FWHM=4 mm (light blue), FWHM=6mm (blue) and FWHM=8 mm (dark blue); the curves for direct RV analysis on unsmoothed fMRI data with
6 mm×6 mm×6 mm search cube (light green); 10 mm×10 mm×10 mm search cube (green); 14 mm×14 mm×14 mm search cube (dark green). the curves for the weighted-RV
on unsmoothed fMRI data with 6 mm×6 mm×6 mm search cube (pink), 10 mm×10 mm×10 mm search cube (red) and 14 mm×14 mm×14 mm search cube (brown); the
simulation use constant value of Hurst exponent (H=0.8) and six different functional contrast-to-noise ratios: (A) CNR=0.1, (B) CNR=0.2, (C) CNR=0.3, (D) CNR=0.4,
(E) CNR=0.5, and (F) CNR=0.6.
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sequential finger movement epochs and rest epochs were performed
alternatively, each replicated 4 times. The task was implemented in a
standard block design. The fMRI scan of the task in Phase 2 was used to
accurately localize each individual's motor region of interest (ROI)
within the left primary motor cortex (or called “M1”). The selection
of local region within the left primarymotor cortex as region of interest
(ROI) is due to the reason that this functional area of the brain is
always reported to be involved in motor tasks (Terumitsu et al., 2009;
Damoiseaux et al., 2006; Jiang et al., 2004; Biswal et al., 1995; Lowe et al.,
1998; Xiong et al., 1999). Each individual's region of interest (ROI) was
then used for analyzing the spatial fine-scale based functional
connectivity during the resting state. Each scan session lasted 4minutes.

Structural and functionalMRIwere collected using a 3.0 TMR imaging
system (Siemens Trio Tim). The fMRI series were collected using a single
shot, T2*-weighted gradient-echo echo planar imaging (EPI) sequence
(TR=3000ms; 36 slices, 4 mm thickness; matrix=64×64) covering
the whole brain with a resolution of 3.75×3.75 mm. High-resolution
anatomical scans were acquired with a three-dimensional enhanced fast
gradient-echo sequence (TR/TE=8.516/3.4 ms, matrix=256×256),
recording 156 axial images with a thickness of 1 mm and a resolution
of 1×1mm.
Preprocessing was performed on each subject's two fMRI sessions:
The first three volumes of each fMRI scan were discarded. Scans were
slice timing corrected, spatially realigned, normalized into the
standard MNI atlas space according to the segmented grey images,
re-sampled to 2 mm cube voxels, global proportionally scaled to yield
a whole-brain intensity value of 1000. For the scan of the task in Phase
2, it was high-pass filtered to correct the low-frequency drift in the
BOLD signals. The volumes of the scan were spatially smoothed with a
full width of 4 mm at half maximum. The scan was then entered into
the General Linear Models (GLM) for parameter estimation. By
comparing the finger-movement condition with the rest condition,
a small active region was localized in the right primary motor cortex
(pb0.001, FDR corrected, number of contingent voxelsN15). Since
this functional region included only the voxels that were significantly
activated during the right finger movement task, this irregular region
was defined as the ROI for analysis of connectivity in resting state
(see Fig. 7). For the resting scan, it was 0.01–0.08Hz band-pass filtered
by using the discrete-cosine-transform (DCT) to retain the low-
frequency fluctuations (LFF) signal only. All the procedure was
implemented with SPM5 software (www.fil.ion.ucl.ac.uk/spm/) and
in-house Matlab codes.

http://www.fil.ion.ucl.ac.uk/spm/
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Data analysis and method comparisons

To compare the performance of the weighted-RV and the traditional
ROI-basedmethods in detecting the fine-scale structure of the functional-
connectivity patterns,we analyzed the functional-connectivitymapof the
motor related brain network during the resting state by using the
following three methods:

(1) Pearson correlation analysis on unsmoothed resting scan;
(2) Pearson correlation analysis on smoothed resting scan with

FWHM=6 mm;
(3) Weighted-RV analysis on unsmoothed resting scan with search

cube=5 mm×5 mm×5 mm.

In Method 2, the variance of Gaussian kernel was 1. In Method 3,
the values of parameters σd, σs, α and β were set to be 1. Here we
selected the Gaussian kernel of 6 mm FWHM in Method 2 and the
search cube of 5 mm×5 mm×5 mm size in Method 3 for comparison.
This was because that the twomethods have same statistical power in
combing the signals of their neighbor voxels, and that our region of
interest contained the closest number of voxels (number of
voxels=118) with the Gaussian kernel and search cube (number of
voxels=125). To find the distributed functional regions that have
significant connectivity with the motor region of interest, significant
tests must be performed on the statistical parametric maps (Pearson
correlation coefficient map obtained with Method 1 and 2 and the
weighted-RV-coefficient map obtained with Method 3). Here, the
weighted-RV map was transformed to the normal distributed map by
using Formula (13) (see Test for the significance of the RV coefficient).
For explicit comparison, the Pearson correlation map was also
transformed to the z-score map by using Fisher's z transformation
(Fox et al., 2005). Finally, for the above three connectivity maps, the
significance levels were adjusted by using the false-discovery-rate
(FDR) to solve the multiple comparisons problem (pb0.01, FDR
corrected, number of contingent voxelN1).

Results of real fMRI data

Fig. 8 shows the connectivity map obtained with the above three
methods. Three connectivity maps all show that, during the resting
state, the left primary motor areas have significant low-frequency
connectivity with the following regions: the right primary motor area
(M1), the supplementary motor area (SMA), the bilateral primary
sensory cortex (S1), and the areas in the bilateral posterior parietal
Fig. 7. The localized region of interest (green arrow) in the left primarymotor cortex for
a single subject by comparing the right finger movement condition with the rest
condition (pb0.001, FDR corrected, number of voxelsN15).
cortex and left anterior cerebellum. However, the connectivity map
obtained with Method 1 shows a salt-and-pepper pattern, which
makes it difficult to distinguish the actual connectivity patterns from
the spatial noise. The connectivity map obtained with Method 2 is
homogeneous within a particular local region. This suggests that
Method 2 removed some spatial random noise and make the con-
nected regions more localized. However, a large number of the fine-
scale patterns of low-frequency connectivity may have been lost. In
contrast, like our simulation results, Method 3 appeared to obtain
relatively the optimal performance in detecting the spatial fine
structure of the connectivity patterns.

The performance of the above three methods can also be illustrated
by focusing on three small local areas from the three different
connectivity maps. From the local area (A) in Fig. 8, there are no
significantly connected voxels in Maps 2 and 3 but exist in Map 1 likely
due to spatial noise. Since Methods 2 and 3 contain the steps of spatial
denoising, these noise voxels are well suppressed. From the local area
(B) in Fig. 8, significantly connected local regions obtained with
Method 2 are larger than those obtained with Methods 1 and 3. This is
likely due to the fact that Method 2 combined the local multiple voxels
without distinguishing the noise and feature information, and thus the
functional-connected regions are extended and the border of the
regions is blurred. Fromthe local area (C) in Fig. 8,we can clearly see that
Method 3 precisely extracted the fine-scaled based spatial connectivity
patterns while Methods 1 and 2 failed to do so.

Group mean of the 8 subjects' connectivity maps revealed that, of
all voxels marked significant, 64.1% (SD=17.2%) were marked
significant in the map obtained with Method 1, 66.5% (SD=19.6%)
were marked significant in the map obtained with Method 2, and
68.1% (SD=23.2%) were marked significant in the map obtained with
Method 3. Only 37.1% (SD=15.5%) were marked significant in maps
obtained with the above three methods (see Fig. 9). This means that
the above three methods shared some common properties in
detecting resting-state motor network. However, at fine scales,
detecting performance of these methods varied substantially.

Of all voxels marked significant in either map, 9% (SD=4%) were
marked in map obtained with Method 1 but not in maps obtained
with Methods 2 and 3. This kind of voxels was most likely to be false
positive voxels caused by spatial random noise because smoothing
and feature-preserved filtering both exclude these voxels well. Of all
voxels marked in either map, 12.5% (SD=6.7%) were marked
significant only in the map obtained with Method 2 but not in the
map obtained with Methods 1 and 3. This kind of voxels was also
highly suspected to be false positive voxels because smoothing of the
data often extends some functionally correlated regions. Of all voxels
marked significant, 16.3% (SD=6.4%) were marked significant only in
the map obtained with Method 3. These voxels most probably
reflected the fine-scale patterns of connectivity information, which
were not detected by using Methods 1 and 2. 9.8% (SD=3.2%) of all
marked voxels exist in the maps obtained with Methods 1 and 2 but
not in themap obtainedwithMethod 3.We aremore inclined to think
these were true positive voxels not only because these voxels passed
through non-smoothing (Method 1) and smoothing (Method 2)
correlation analyses, but also because our weighted-RV methods
(Method 3) were not accurate enough at present to detect all
the positive voxels. Finally, results of one-sample t-test group analysis
of each method's Z-maps were shown in Fig. 10 (pb0.05, FDR
corrected).

Discussion

Todate, the investigation of resting-state functional connectivity can
be roughly classified into two categories: the ROI-based correlation
analysis and the singular value decomposition (SVD)-based component
analysis (also known as “data-driven” methods). The “data-driven”
methods, such as principal component analysis (PCA), independent
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Fig. 8. The functional-connectivity map of the motor network during the resting state. pb0.01, FDR corrected, number of contingent voxelN1. (1) Maps obtained with Pearson
correlation analysis on unsmoothed resting scan; (2) maps obtained with Pearson correlation analysis on smoothed resting scan with FWHM=6mm; (3) maps obtained with
weighted-RV analysis on unsmoothed resting scan with search cube=5 mm×5 mm×5 mm.
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Fig. 9. Group mean of 8 subjects' connectivity maps. The average proportions of the voxels detected with Method 1 (red); the average proportions of the voxels detected with
Method 2 (green); the average proportions of the voxels detected with Method 3 (yellow); the average proportions of the voxels detected with Methods 1 and 2 (dark green); the
average proportions of the voxels detected with Methods 1 and 3 (orange); the average proportions of the voxels detected with Methods 2 and 3 (green yellow); the average
proportions of the voxels detected with Methods 2 and 3 (olive green). Of all voxels marked significant in either connectivity map, 9% (SD=4%) are marked significant only in the
map obtained with Method 1; 12.5% (SD=6.7%) are marked significant only in the map obtained with Method 2; 16.3% (SD=6.4%) are marked significant only in the map obtained
with Method 3; 9.8% (SD=3.2%) are marked significant in maps obtained with Methods 1 and 2; 8.2% (SD=2.7%) are marked significant in maps obtained with Methods 1 and 3;
7.1% (SD=2.6%) are marked significant in maps obtained with Methods 2 and 3; 37.1% (SD=15.5%) are marked significant in maps obtained with the three methods.
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component analysis (ICA: Damoiseaux et al., 2006; Beckmann et al.,
2005), canonical correlation analysis (CCA: Nandy and Cordes, 2004;
Ragnehed et al., 2009) and partial least squares (PLS: McIntosh et al.,
2004), have achieved great success in simultaneously extracting a
variety of functional-connectivity maps. However, despite their many
advantages, the major limitation of these methods is their difficulty in
explaining the function of every decomposed connectivity map. Also, it
is hard to distinguish the results due to the spatial random noises and
those due to some fine-grained patterns of connectivity maps. In
contrast, the ROI-based correlation analysis is used for directly detecting
a function-specialized network (Biswal et al., 1995; Lowe et al., 1998;
Greicius et al., 2003; Fox et al., 2005; Bokde et al., 2006). By predefining
a functionally specialized ROI and measuring the correlation between
the BOLD time course from the ROI and the time course from all other
local regions in the brain, we can explicitly obtain the connectivity
between these functionally related brain regions within a functionally
specialized brain network we are focusing on. For the above reasons,
we prefer ROI-based methods for obtaining functionally specialized
brain networks in the resting state.1

In this paper, we develop an ROI-based multivariate statistical
framework for the analysis of the low-frequency functional connec-
tivity of brain network during the resting state. Under this
framework, the weighted-RV method is proposed to detect the
spatial fine-scale patterns of functional connectivity. Simulation and
real fMRI experiment both show that the weighted-RV method
achieves much better performance in mapping the fine-grained
patterns of functionally specialized brain network compared to the
traditional ROI-based methods. The success of this method is due to
two reasons: one is that we use local multivariate voxels instead of
one single voxel for measuring its synchronization of low-frequency
BOLD fluctuations with ROI, so more information of local spatial
structure is kept. The other is that we use a strategy similar to
bilateral filter to give different voxels within the search cube dif-
ferent weights when performing multivariate similarity measure.
This strategy can well suppress the spatial random noise as well as
extract the fine-grained structure of the connectivity patterns, so it is
1 Other methods focus on evaluating the interregional connectivity of all predefined
ROIs (Harrison et al., 2003; Gitelman et al., 2003; Cordes et al., 2002; Salvador et al.,
2005; Achard et al., 2006). This kind of methods is not usually used for detecting whole
brain network, so we do not discuss it further here.
more sensitive in detecting the fine-scale low-frequency connectiv-
ity even at a very low functional contrast-to-noise ratio (CNR).

The exploration of the fine-scale functional connectivity relies on
advancement of two aspects: high-resolution functional magnetic
resonance imaging (fMRI) technique and the advanced data analysis
method. The 3.0 T or higher field magnetic resonance imaging
technique provides us with a large amount of data containing fine-
scale based spatial information. By using the advanced data analysis
method such as the weighted-RV proposed here, we canmake full use
of the spatial information to capture the fine-grained spatial structure
of functional connectivity.

In the real fMRI experiment, we extracted the functional
connectivity of the motor cortex during the resting state, an issue
that has been studied extensively. Our result is consistent with the
findings of these previous studies using the traditional ROI-based
univariate analysis method (Biswal et al., 1995; Xiong et al., 1999), as
well as the findings using the ICA methods (Damoiseaux et al., 2006;
Robinson et al., 2009). However, at the fine scale, our result appeared
to provide more spatial fine-scale patterns of functional connectivity
that were not clearly observed previously.

The weighted-RV method can be further improved. In this paper,
the RV coefficient map is tested by using the parametric permutation
test. The advantage of this kind of test is the low computational
cost while at the same time providing a reasonable estimation of the
p-values. However, there are also some novel tests that are more
sensitive in testing cluster based statistics. For example, Poline et al.
(1997) developed a voxel-and -cluster-combined test based on the
Gaussian random field theory. Bullmore et al. (1999) used maximum
clustermass as a statistic to perform thepermutation test. Hayasaka and
Nichols' (2004) combined voxel–cluster size tests are also sensitive and
perform well in testing cluster based statistics. These tests can also be
utilized in the future to test the significance of the RV coefficient map
to improve statistical sensitivity.

RV coefficient is clearly a suitable multivariate statistic to measure
the similarity between two sets of BOLD signals. However, it should
not be construed as the only multivariate statistic that is capable of
achieving the performance obtained in the present study. Under the
multivariate statistical framework constructed in this paper, other
multivariate statistic for similarity can also be utilized, such as
the canonical correlation coefficient. In this paper, our weighted-RV
method can well suppress the spatial random noise and enhance
the detectability of the fine-scale spatial functional-connectivity
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Fig. 10. The one-sample t-test analysis of (A) Pearson correlation analysis on unsmoothed data; (B) Pearson correlation analysis on smoothed data; (C) weighted-RV analysis on
unsmoothed data. pb0.05, FDR corrected, number of contingent voxelN1.
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information, which is achieved by the integration of the bilateral
filtering to the multivariate statistical framework. In view of this, more
advanced feature-preserving denoisingmethods can also be considered
and integrated into our multivariate framework. The application of the
weighted-RV focuses on detecting the resting-state functional connec-
tivity in this paper. However, it can also be extended to detect special
task induced fine-scale functional connectivity, which needs to be
explored in the near future.
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Appendix A

The test used in this article is to approximate the permutation
distribution by a continuous distribution under the null hypothesis that
the data sets X and Y (see Themultivariate framework for the analysis of
functional connectivity) are independent. In 1995, Kazi-Aoual et al.
(1995) gave the explicit expressions for the first two moments of the
permutated RV coefficient. Considering the RVpermutation distribution
is markedly skewed to the right, Heo and Gabriel (1998) used the log-
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transformation of the RV'sfirst twomoment to obtain an approximately
normal distribution.

Let: X=(x1,x2,...,xn)t, Y=(y1,y2,...,yn)t, A=XXT, B=YYT. X(n×p) and
Y(n× q) must be mean-centered by column. If it is not mean centered, it
can be transformed in the following way:

In−
1
n

� �
1n1

T
n

� �
X = X− 1

n

� �
1n1

T
nX ðA:1Þ

where In is the identity matrix of size n and 1n is the column-vector of
n ones.

The mathematical expectation of permutated RV(X,Y) is calculated
as follows:

Eperm RV X;Yð Þ
� �

=
tr Að Þtr Bð Þ

n−1ð Þ × tr AAð Þ12 × tr BBð Þ12
: ðA:2Þ

The variance of permutated RV(X,Y) can be calculated:
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The mathematical expectation of the log-transformation of the
permutated RV(X,Y) is calculated as follows:

Eperm log RV X;Yð Þ
� �� �

= log Eperm RV X;Yð Þ
� �� �

−1
2

log 1 +
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The variance of the log-transformation of the permutated RV(X,Y):

Vperm log RV X;Yð Þ
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= log 1 +
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We obtain a new statistic of standard normal distribution
(Formula 13):

Z =
log RV X;Yð Þ
� �

−Eperm log RV X;Yð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vperm log RV X;Yð Þ

� �� �r :

The log-transformation of the RV permutation distribution is
suggested as a better normal approximation to obtain the real p-value
without performing actual permutation (Josse et al., 2008).

Appendix B

Many singular value decomposition (SVD)-based multivariate statis-
tical methods, such as PCA (principal component analysis), CCA
(canonical correlation analysis), MLM (multivariate linear regression
analysis), PLS (Partial least square model analysis) and discriminant
analysis can be generalized within the framework of RV-coefficient
problem. The following gives the association between the RV coefficient
and PCA as well as CCA.
RV coefficient and PCA

Giving n×p matrix X and n×q matrix Y, PCA can be interpreted as
finding the linear transformation matrix M (M is q×r matrix with
rank r, q≥ r), such that for matrix YM, RV(X,YM) are maximized.

Let: S11=X′X, S22=Y′Y, S12=X′Y, S21=Y′X

max RV X;YMð Þ = max
tr S12MM′S21ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr S211
� �

tr S222
� �q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
r

i=1
λ2
i

tr S211
� �

vuuuut : ðB:1Þ

Eq. (B.1) is obtained when the following constraint-condition is
satisfied:

1) M′S22M=Λ
2) S22

+S21S12M=MΛ , S22+ is pseudoinverse of S22.
3) Λ=diag(λ1,λ2,…λr) is the eigenvalues of matrix S22

+ S21S12,
λ1≥λ2≥…λr.

Specifically, when M′M= Ir,

RV Y ;YMð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
r

i=1
λ2
i

∑
p

i=1
λ2
i

vuuuuuut : ðB:2Þ

More specifically, if p=r, which means M is a orthogonal matrix,

RV Y ;YMð Þ = 1: ðB:3Þ

RV coefficient and CCA

Giving n×p matrix X and n×q matrix Y, CCA be interpreted as
finding the linear transformation matrix L (L is p×rmatrix with rank r)
andM (M is q×rmatrixwith rank r) that formatrixXL andYM,RV(XL,YM)
are maximized.

Let: S11=X′X, S22=Y′Y, S12=X′Y, S21=Y′X

max RV XL; YMð Þ = max
tr L′S12MM′S21Lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
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Eq. (B.4) is obtained when the following constraint-condition is
satisfied:

1) L′S11L=Δx; Δx=diag(δx1,δx2,...δxr)
2) M′S22M=Δy;Δy=diag(δy1,δy2,…δyr)
3) S11

+S12S22
+S21L=LΛ

4) S22
+S21S11

+S12M=MΛ

where Λ=diag(γ1,γ2,…γr) is the eigenvalues of matrices S11+S12S22
+S21,

S22
+S21S11

+S12, and λ1≥λ2≥…λr, S11+ is pseudoinverse of S11, and S22
+ is

pseudoinverse of S22.
Under the above constraint-condition, we can also deduce the

following equations:

M = S−1
22 S21LΛ
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2Δ−1

2
x Δ−1

2
y ðB:5Þ

L = S−1
11 S12MΛ−1
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XLð Þ YMð Þ′ = diag γ1δx1δy1;γ2δx2δy2;…γrδxrδyr
� �

: ðB:7Þ

If we give additional constraint-condition:

5) (XL)(XL)′= Ir
6) (YM)(YM)′= Ir

where Ir is the identity matrix of size r, the maximum of RV(XL,YM) is
equal to:

max RV XL;YMð Þ =
∑
r

i=1
γiδxiδyi

� �
r

: ðB:8Þ

If we further add constraint-condition: δxi=1r, δyi=1r, i=1,2,… r,
the maximum of RV(XL,YM) is

RV XL;YMð Þ =
∑
r

i=1
γi

r
: ðB:9Þ
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