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Abstract

Functional magnetic resonance imaging {MRI has opened a new area to explore the human brain. The fMRI can re-

veal the deep insights of spatial and temporal changes underlying a broad range of brain function such as motor vision memory and emo-

tion all of which are helpful in the clinical investigation. In this paper we introduce some recent-developed algorithms for fMRI signal de-

tection such as model-driven method general linear model deconvolution model non-linear model etc. and data-driven method princi-

ple component analysis independent component analysis  self-organization mapping clustered constrained non-negative matrix factoriza-

tion etc. . We also propose several important applications of neuroimaging and point out their shortcomings and future perspectives.

Keywords fMRI data analysis neuroimaging.

The idea that regional cerebral blood flow CBF
can reflect neuronal activity was confirmed by the ex-
periments of Roy and Sherrington in 1890 ' . This
concept is the basis of all the hemodynamic-based
brain imaging techniques being used today. The focal
increase of CBF is directly related to the neuronal ac-
tivity. Thus CBF changes have been used to measure
the functions of brain. CBF changes can be detected
by fMRI based on the fact that the MRI signal is sen-
such as

which
was reported in the early 1990s by a number of re-
Currently fMRI is the most influential
noninvasive technology with venous blood oxygena-
tion level-dependent BOLD  magnetic resonance
imaging MRI contrast. BOLD fMRI signal ad-
vances with the increasing local neuronal activity.
The neuron activation takes oxygen and glucose from
capillary. At first  deoxy-
haemoglobin dHb concentrates at the site of activa-
tion due to increased consumption of oxygen and glu-
cose. dHb is paramagnetic and leads to weaker BOLD
fMRI signal. With the persistence of neural activity

sitive to many hemodynamic parameters
blood flow blood volume and oxygenation

searches 2%

the surrounding

the cerebral blood flow overcompensates the demand
of oxygen. Consequently the haemoglobin Hb

concentrates diamagnetic
stronger {MRI signal. Details of this process can be

which is and makes
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described by certain mathematic models.

In a typical IMRI investigation the subject’ s
brain function is activated by performing certain task
in a MR scanner for example to make finger tap or
to see some images while scanning .
sion contains mainly four steps experimental design

usually including
image registration and noise removal  and signal de-
tection. Several types of signals can be encoded with-
in the hemodynamic signals measured by fMRI for
example  task-related components  neurophysio-
logical components and noise . And the intensity
difference of MR signal between the task and rest is
only 2% —5% of the local image. After preprocessing
of IMRI data
elling the data to partition observed neurophysio-
logical responses into the components of interest con-

The whole ses-

Image acquisition preprocessing

signal detection corresponds to mod-

founds or components of no interest and error terms.
And the research of IMRI data analysis aims to sepa-
rate the components of interests. Our work is focused
on the discussion of signal detection which is the core
of data analysis.

The methods are usually classified into two cate-
gories model-driven and data-driven methods. In the
model-driven category general linear model GLM
is the most popular one. It is a framework that in-
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ANOVA
and multiple regressions. Upon the completion of an

cludes simple t-test analysis of variance

experimental design the design matrix of GLM can
be specified and the classic parameter estimation
such as multiple regression will be ap-
plied. A parameter map is obtained as a consequence
and its statistic parameter inference is made under the

methods

null-hypothesis that the voxel is nonactivated. The
most popular free software Statistical Parametric
Mapping SPM has taken GLLM as its solution. De-
convolution is
method ° ¢ . At first the impulse response function
IRF is estimated and then convolves the IRF with
the stimulus paradigm to yield the estimated re-

another often-used model-driven

sponse. Then various statistics are calculated to indi-
cate thé goodness” of the fit. Finally according to a
predefined level of statistics the activated voxels can
be identified. Analysis of functional neuroimages
AFNI is implemented through the deconvolution
model. Fast-orthogonal search FOS is a kind of
nonlinear method. FOS provides a more accurate
model description and is an efficient algorithm which
achieves real time computation. Obviously model-
driven method seriously depends on the prior experi-
mental design knowledge. However
only a mass of data without any prior knowledge
the data-driven method provides
an option to analyze the brain activity by means of in-

when there is
about experiments
dependent component analysis ICA  principle com-
ponent analysis PCA  etc. These two methods
both search for the components which can explain the
measured MRI signal® well”. The only difference
between the two methods is that the principal compo-
nents are orthogonal and the independent components
are statistically independent. Cluster analysis is an-
other data-driven method which includes c-means

fuzzy cluster analysis FCA  self-organizing map-
ping SOM
to hunt for a class of points with similar properties.
Among them clustered constrained non-negative ma-
trix factorization is a relatively new method to pre-
serve the intrinsic geometric characteristics of the da-

and so on. These methods are applied

ta.

There is no such a review which summarizes all
the existing methods for data analysis. And no pre-
dominant advantages have been found in either kind
of methods. They are complementary.

fMRI is used not only in cognitive research but
also in clinical applications such as the navigation.
The ultimate success of these research is based on the

accuracy model of the relationships between the mea-
sured signal and the neuronal activity. In this review
we first briefly explain the IMRI imaging principles
and then discuss some standard methods for charac-
terization of data model.

1 fMRI data analysis

This section describes the analysis steps of {MRI
data including both the preprocessing and signal de-
tection. The preprocessing usually involves two
steps. First the image of time series must be re-
aligned and then registered to a standard coordinate
space. Subject motion during a fMRI examination re-
sults in a significant loss of functional information. To
overcome this side effect all the slices must be re-
aligned. Under the assumption of the rigid motion
realignment only requires a rigid transformation for
each image e.g. aligning every image to the desired
image of the time series. To compare time series a-
mong different subjects it is necessary to map the
anatomical coordinates into a standard coordinates
space for each subject. The Talariach space and Mon-
treal Neurological Institute MNI space are the of-
ten-used ones. In this case the images must be spa-
tially normalized which require nonlinear transforma-
tions ’ . Secondly noise removal is a routine for M-
RI data preprocessing for two reasons ®?  one is the
increase of the signal-to-noise ratio SNR  the other
is the interpretation of the images as gaussian random
fields. Noise removal may also be called spatial
smoothing and can be done by convolving the image
with a lowpass filter kernel. After denoising the im-

ages are ready for signal detection.
1.1  Model-driven methods

In this section we first review some linear mod-
el-driven IMRI data analysis methods such as general
linear model and deconvolution model. For a compre-
hensive description of the hemodynamic model non-
linear model must be placed then.

1.1.1 GLM stands
for general linear model and its root may go back to
the origins of mathematical thought—the theory of

General linear model

algebraic invariants in the 1800s. The theory was de-
veloped by several great mathematicians such as Gauss

he first established the fundamental theorem of alge-
bra which states that any complex polynomial must
have a complex root  Boole who initiated thé alge-

braic invariants”  Cayler the founder of the polyno-



Progress in Natural Science  Vol.16 No.8 2006 www. tandf. co. uk journals 787

mial discriminant which is originally known as hyper-
determinants and Sylvester the inventer of recipro-
cants-differential invariants theory . The algebraic
invariants theory seeks to identify those quantities in
systems of equations which remain unchanged with
the linear transformation such as eigenvalues eigen-
vectors determinants and the correlation between

two variables.

Friston '8 first introduced the concept of

GLM into fMRI and nowadays it has been applied in
many areas. GLM is a voxel by voxel method in fM-
RI application. It models the data at each voxel as a
linear combination of explanatory variables plus a

13" It then creates a mapping to

residual error term
reflect the statistical significance and characterize the
specific regional response. GLM in fMRI is a fairly
mature framework and has been implemented as a
free software called statistical parametric mapping
SPM . GLM is at the center of the frame. Here

we sum up the steps of the model.

Let us denote by X N X T matrix one session
of a IMRI data set where N is the number of voxels
in the data set and T is the length of the time series.
Thus X
The model assumes that 1 the response to the stimu-
lation is linear time-invariant 2

. L is the signal at voxel n and time .

canonical hemody-
namic response function hrf is assumed to be identi-
cal for all the voxels 3 the noise ¢, is independent
and identically distributed normal random variables
iid

. . 2 .
with zero mean and variance ¢° written as €, —

N 0 ¢* . Then the most basic signal model is

M
X, t =by+ Zb’" n hP, t +e, t

1
where P, ¢t =12 T m=12 M is the

time course of the effect and & is the canonical hrf.

b n

m

is the amplitude of the stimulus responses and

et is the noise term. Consequently we assume

n

the signal is centered and then b,=0.

Letus denote g,, ¢t =h*P, ¢t m=12
M. Then we obtain a matrix form with the de-
sign matrix G = g,, ¢
X =Gp+e¢. 2
The design matrix G contains the explanatory vari-
ables related to the specific experimental conditions
and each column is associated with an unknown pa-
rameter in vectors B. If and only if the design matrix

G is full rank least square estimate of B is uniquely

given by

p= G'¢ '¢'x. 3
Through the Gauss-Markov theorem the least square
estimation is the maximum likelihood one when the
errors are normally distributed and it is also the best
linear unbiased estimation. That means that in all the
linear estimations whose expectation is the true value
the least square estimate has the minimum variance.

The residual variance o is estimated by the

residual mean square
2

-2 £'s 2 XT-p
o =1 » ~ o » 4
where p = rank G . The least square estimation is
normally distributed B~N B o> G'G ~' then
for a column vector ¢ containing L weights
cTi} ~ N cTﬁ e GG e . 5

Then CTI} can be assessed by using

Th T
»chﬂ Tc b -ty 6
voeo GG ¢
where ¢ 18 the student distribution with the free-
dom T — p. In SPM all tested null hypotheses are

of the form ¢’ p=0 and all the SPM tests based on T-
distribution are one side.

We suppose a model with parameter vector f
which can be partitioned into two parts B = ﬁlTD
ﬁzT T and wish to test the hypothesis #° p,=0. The

corresponding partition of the design matrix G is
G= Gll:IG2 then the full model is
B,
x = ¢Ha, +e. 7
B,
When # is true it becomes a reduced model X =
G,B,+ &. Suppose the residual sums of squares for
the full and reduced models are s B and s B, re-
spectively then extra sum of squares due to B, after
B,iss Bl B, =s B, —s B . Under the assump-
tion that #'is true s B and s B,| B, are indepen-
dent and 5 B, | B, —~ azxi where the degree of
freedom is p=rank G —rank G, . Then the hy-
pothesis can be assessed by
s B, —s B P~ D
s p T-—-p

F = ~F

p=p, T=p
8
where p=rank G  p,=rank G, and T is the to-

tal scan numbers.
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In addition to standard GLM in SPM we will
discuss another popular model-driven method decon-
volution model. In this model the impulse response
function IRF is estimated first and the response is
obtained by convolving the IRF with the stimulus
paradigm. Then various statistics are calculated to
demonstrate thé' goodness” of fit. Finally the acti-
vated voxels can be identified by a predefined level of

statistics.

In the decon-
the system is assumed to be linear

1.1.2  Deconvolution model
volution model
time-invariant. For an arbitrary input the response
of a linear time-invariant system can be determined
from its response to an impulse function Dirac delta
function . The impulse function § ¢

mathematic concept which has an infinite height but

is a theoretical

zero width
ot = 0 L0 9

with the property that the area under its curve is uni-
ty

+e
Jafdle Ve >0. 10
Let us denote f ¢t as follows
+DO
ft:J frdt—rtdr 11

and the discrete form is

Joo
[t :imxanz 0 t — nlAt Atr.
12
For the impulse function we denote h ¢ as its cor-
responding output function which is also called im-
pulse response function IRF
ht =Td&dr . 13
For an arbitrary input f ¢ assume that y ¢ is the
corresponding output
yt =T ft . 14
Since the system is linear the formulation can be

written as

15
And the system is time-invariant then

vt :AlirréanAth t — nlAt At. 16

n=—oo

In an integration form we have

+ 00
yZ:J ftht—rtdr. 17

And using the convolution integral concept we have

+oo
Jf‘rht*‘rdrzft(ghl.l?g

In fact all the physical system is causal which
means the output at time ¢, is only determined by the
inputs at times 7<<¢,. And by assuming the input is
zero when <0 the convolution integral can be writ-
ten as

yt:J;f‘rht*fdr. 19

In the discrete form y ¢ can be

y nAtr = Ef mAt h nAt — mAr At.

m=0
20

For a numeric solution we have

y
y“ = Zf‘n*mh"l n > p 21

m=0
for a practical system the measurement

then denote by Z, the real

Of course
must have some noise
measurements and

P
Zn = 2](‘;1—,/1}1,)1 + €i’l

m=0
where the noise term ¢, is often assumed to have the

n=p 22

property snMN 0 5% .

For fMRI data set we have the following matrix

form
Z =Xp+e 23
where
Z,
Z = Zﬁl
Zyy
1 p Iy o
O O 0O 0O O
L N-1 fy, f;\/—p—l
Bo .
By 3
€

B = |h g = E'l
h, EN-1
Then the least square estimate of f is

B= x'x 'x'z. 24
Now various statistic tests such as z-test and F-test
can be applied to access the hypothesis. And accord-

ing to a given threshold the activated voxel can be i-
dentified.
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1.1.3 Nonlinear model All the above men-
tioned methods are based on the assumption of linear
system. However LTI sytems
may not be able to adequately model the dynamics of
fMRI signal. Great effort has been made to develop
the nonlinear methods for modelling the fMRI signal
dynamics "*71% . Recently Li et al. 7 proposed a
fast-orthogonal search FOS method to model the
nonlinear dynamics of the fMRI signal based on the
Volterra series. The authors first approximated a

time-invariant LTI

nonlinear system by the discrete time Volterra series

as follows
R-1

yn :hlJrZhjx n—j
i=1
R-1 R-I
+2 Zh JiJo X nm—j, x n—j,
I
25

where h| h j represent the zero-order

h jy Js
first-order and second-order Volterra kernels respec-
tively and they can be estimated from the knowledge
of the system input x n and output y n . R is the
number of basis function. Eq. 25 can be briefly

written as

M-1
yn = Eaum n +en 26

m=1
N and N is the the number of
presents a term of the model and

where n =1 2
scans a, P, n

e n indicates the additive noise. Using the orthogo-
nal basis functions Eq. 25 is equivalent to

M-1
yn = ngWm n +en 27
m=1
where W, n W, n = 0 for i # £k and

N
- 1 -
W. n W, n NEWZ n W, n . g, and
n=1
W, n is demonstrated as
m—1
Wm n = P”l 77 - 2 anIrWr n ﬁl 2 2
r=1
28
and
P, n W_n
a,, = =t 29
W n
Here
Wy n =Py, n 30
P, n =cos wt, 31
P,,n =snowt, . 32

For a given orthogonal basis function W n

m

the coefficient estimate g,, which minimizes the mean

square error MSE is given by

n W n
gm - y 2 S 33
Wnl n
and the MSE is
o M1 5
et = yn - ngWm n . 34

m=1
When all the M basis functions have been selected

the coefficients a,, in Eq. 26 can be obtained

vl
ay, - Zlgm‘vm 35
m=k
where
m—1
v/e = 1 U == Zamr‘vr
r==k
and
m=r+1 M —-1. 36
Finally the following model is
Yn =ynfn temn 37

where Y n is the observed time series e n shows
the error term and f8 represents the parameter ma-
trix. Then various statistic methods e. g. z-test or
F-test can be performed to detect the brain activa-
tion region. Briefly FOS is an iterative algorithm
and can be used to detect the real-time activation sig-

nal.
1.2 Data-driven methods

Data-driven methods are complementary to mod-
el-driven methods. They can generate new hypothe-
ses separate and understand the nature of the mix-
ture and then find non-trivial components of inter-
8 In this section we introduce some popular
data-driven methods such as principal component
analysis PCA

ICA as well as cluster analysis.

est

independent component analysis

1.2.1 Principal component analysis PCA is
a popular tool for the analysis of image data sets and is

[ 722 The objective is

actively investigated in MR
simplifying the data description by projecting the data
vector onto the eigendirections in correspondence to
the largest eigenvalues of the covariance matrix 2 .
The image database is decomposed into several princi-
pal components by PCA. It describes the uncorrelated

sequences in the image data set.

PCA is closely related to the singular value de-
composition SVD . For a dataset X NXM N>
M its SVD is given by

X = USV' 38
where U is an N X M matrix and V is an M X M
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square matrix both of them have orthogonal columns
so that
U'u=v'v=1 39

and S is an M X M diagonal matrix. The eigenvalues
are the diagonal elements of §° while U and V are
the corresponding matrices of eigenvectors for MM ©
and MM respectively. Postmultiplying U by S re-
sults in the matrix P which contains the principal
component time series. PCA first measures the ten-
dency of signals at all possible pairs of voxels and
then finds the orthogonal spatial patterns
ages capturing the greatest variance in the data. The
first eigenimage represents the first component that

eigenim-

can explain the data the second eigenimage illus-
trates the second component and is orthogonal to the
first eigenimage and so on. As illustrated in Fig. 1

there are some points scattered in the two-dimensional
space. After PCA we can find two directions that
represent the first two components. The red line indi-
cates the direction of the first principal component

and the green is the second.

Fig. 1. Tllustration of PCA. The red line indicates the direction of

the first principal component and the green is the second.

For {MRI
temporal dimension is along the columns and the vox-
elspace dimension is along the rows

the data set is arranged so that the

time by vox-
els . The most common use for PCA now is to reduce
the dimensionality of the data while retaining the
most information.

1.2.2
this section we introduce the independent component
analysis ICA and its applications in {MRI data anal-
ysis methods.

Independent component analysis In

ICA is a signal processing technique. It separates
a number of statistically independent sources that

have been mixed linearly without further knowledge
of their distributions or dynamics ' . ICA was origi-
nally proposed for the blind source separation problem
and used for solving the cocktail party problem.

In the cocktail party problem m speakers are
talking at the same time and recorded by N micro-
phones. A given microphone is not placed to a specific
speaker and is not shielded from other speakers. In
this situation each microphone records a mixture of
all speeches. This is also called the blind source sepa-
ration problem. The goal of ICA is to find a linear
unmixing matrix W of the measurement matrix X
which
makes the rows of component matrix Y the recovery
of the sources as independent as possible.

conversations recorded in microphones

With the development of the neural network a
fast and efficient algorithm was developed as INFO-
MAX ICA % .
by maximizing the information transfer in the unsu-
pervised neural network. Bell et al. ?* proposed the
original ICA algorithm to separate the super-Gaussian

It resolves the cocktail party problem

sources from the multi-channel measurements. Lee et
al. ** extended this method to model a more general
source super-Gaussian and sub-Gaussian . Both the
original and extended ICA algorithms are based upon
the assumption that the source distribution is sub-
gaussian or super-gaussian or their mixture. Xu et
al.  proposed a non-linear approach to overcome
this limitation so that there is no special demand on
the source density when using ICA algorithm. Later

the scientists proposed other methods to select the
model 2 %7 for the IMRI data analysis. McKeown et
al. 2 first adopted ICA algorithms for IMRI data
analysis.

ICA in fMRI solves the same problem as it does
in blind source separation. In fMRI study ICA takes
multi-channel measurements X as an N X M matrix
where N is the time points and M is the number of
voxels. In a matrix form

X = AS 40
where X= x, x, ay is the IMRI data set and
S= 5, 5, sy 1is the source matrix of {MRI.
According to Eq. 40
represented by the linear combination of a, 1<<i<<

the ;" time course of X is

N and their components are defined by the j b ol
umn of § whose elements are statistically independent
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Xy Ay A
XZ' A21 A22
Dj = D Slj + D SZj —+
Xy Ay Ana
AIN
AZN
+ D SNj 41
A\]\]

where a,= A, A, Ay a; s the i™ column
of the mixing matrix A. The BOLD signal X;; is
modelled as the summation of the individual indepen-
dent component S;; S, Sy
weighed by the corresponding factors
AN -

which 1is

Az’l Ai2

ICA directly solves
the inverse problem which recovers source matrix $

Based on the mixing model

and finds the unmixing matrix W from the spatio-
temporal MRI data set X. ICA iteratively deter-
mines the unknown unmixing matrix W  which
makes u; as independent as possible. The unmixing
principle is

U= WX 42
where U= u, u, un - The process is illustrat-
ed in Fig. 2.

Component Measured fMRI Estimate of
maps signals components

5 X7 ;
Mixing X;| Unmixing
matrix A\fiﬂ\ matrix W

Sy - ] iy

X3

Fig. 2.

Mixing and unmixing model in fMRI.

PCA and ICA are somehow related. PCA is a
special case of ICA because the independence of ran-
dom variables is more limited than the decorrelation.
This is why PCA cannot separate the signals they
give uncorrelated components. In fMRI ICA has
been proved to be a better means for isolation and re-
moval of structured noise while PCA is superior for
isolation and removal of random noise ' . ICA can be

applied to distinguish nontask-related signal compo-
movements and other artifacts. The consis-
tently or transiently task-related fMRI can be activa-
tions defined as well. It is a highly promising method
for fMRI data analysis and has been successfully em-
ployed by many researches. PCA is an important pre-

nents

processing step before ICA execution.

Finally we make a brief introduction of the IN-
FOMAX ICA in fMRI #  which is the most often-
used criterion for ICA. First initialize W to the i-
dentity matrix I and denote X, = PX where P =

_1
2 XX' "2 and XX' is the covariance matrix of
the IMRI data matrix X. Then compute

AW = I+ 1-2y U W 43

where U= WX and y, =g u, = . Using

—u

1+e 7
Eq. 43 toupdate W W<W + AW until the stop

criterion is approached e. g.
6

root mean square
changes for all elements <10~

Another type of da-
ta-driven approach is cluster analysis which groups
image pixels based on the similarities defined by the

1.2.3 Cluster analysis

chosen distance measurement. The result consists of a
partition of the data known as clusters and the cor-
responding cluster center. Each cluster contains vox-
els with the similar signal time courses and the set of
cluster centers represents the structure in the data.
Most commonly used cluster methods in fMRI are c-

means 29—32 33—36

fuzzy cluster analysis FCA
dynamical cluster analysis DCA 37

istic annealing ¥ . One of the most important issues

and determin-

in the cluster analysis is to estimate the number of the
clusters as Charles et al. % proposed. They first e-
valuate the signal subspace and the maximum likeli-
hood estimation is implemented via the expectation-
maximization algorithm under several assumptions
which form the problem into the Gaussian mixture
model. Then a minimum description length MDL

criterion is proposed to figure the number of clusters.
And this method performs better than the traditional
manner such as c-means and FCA.

Self-organizing map SOM is also one of the
topology-preserving clustering methods. It classifies
the time signal of the brain into several patterns ac-
cording to the temporal similarity of the signals.
SOM is understood as a neighborhood-preserving
mapping of highly dimensional data onto a two-di-

mensional lattice while preserving the topological
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structure of a data set. This map represents the clus-
ter centers which are updated by taking randomly se-
lected features of the data set. The difference be-
tween the classic clustering methods and SOM is that
the incorporation of a new feature into the nearest
cluster has an impact on the neighboring.

Many researchers adopt SOM to analyze fMRI
data set = . In SOM technique
nodes used is predetermined by the user under a few

the number of

general guidelines. For example if the number of the
nodes is too small the flexibility of this manifold and
the goodness of the fit are poor. While if the number
of nodes is too large more computational demanding
is needed. William et al. ¥ proposed a method to
solve this problem. They use a cluster merging tech-
nique based on examining the reproducibility of the
fMRI data across epochs to merge certain SOM nodes
called® candidate nodes” and the resulting” super
nodes” give the time course template of the potential
interest which is used in the subsequent traditional
template-based analysis. Here we briefly discuss the
basic SOM algorithm in fMRI ** . In pseudocode

SOM clustering works as follows

1 fix SOM dimension along with training pa-
rameters

2 initialize each node
3 randomly select a pixel time course PTC

4 find the cluster center with minimal distance

to the PTC

5 move this cluster center towards the selected

PTC

6 elastically move the neighboring cluster center

on the SOM

7 if the stopping criteria are not yet satisfied
goto3 .

When map training is processing the amount of
the cluster center is reduced and the neighborhood of
the current center is reduced as well. This behavior is
modeled by a neighborhood function A_; when ran-
domly selecting a PTC a with its nearest cluster cen-
ter ¢, the update function for all cluster centers c;
takes the form
c t+1 =¢ ¢

7

+h;,t xt —¢t

1

44

where h; ¢ should be
hy, t =hdr.—r, t 45

ct
and r, € F r, € F are the location vectors of SOM
nodes ¢, and ¢; in the array and d - is the Eu-

clidean distance.

1.2.4 Clustered cNMF Clustered ¢cNMF
stands for clustered constrained non-negative matrix
Non-negative

NMF is a relatively new technique proposed for di-
mensionality reduction ** * . It employs the Poisson
statistics as a noise model and preserves a lot of struc-
ture of the original data. NMF is motivated mainly
because the fMRI data is positively defined and NMF
is based on positive restrictions meaning that NMF
can be a suitable method for such a problem. In addi-
tion NMF computation is based upon the simple iter-
ation algorithm and it provides a nice simple learning
rule which is guaranteed to converge monotonically.
Recently Wang et al. *® proposed a new method as
clustered constrained NMF to estimate the statistical-

factorization. matrix factorization

ly distinct neural responses in a sequence of fMRI.
They utilized an improved objective function which is
more suitable for the task-related brain activation de-
tection and placed particular emphasis on the initial-
ization of the cNMF algorithm. Finally they use the
K-means algorithm and the information theoretic
criterion of minimum description length MDL is
used to estimate the number of clusters. The algo-
rithm can be summarized by the following steps

1 initialize K with a large number K

max

2 group the data set using the k-means algo-
rithms

3 calculate the MDL K

otherwise K =

4 if K<K,,
K-1

go to step 5

n

then go to step 2

5 select K and its corresponding parameters
that results in the smallest value of the MDL criteri-
on

6 execute the cNMF algorithm.

The authors developed a new method to fMRI
data analysis based on NMF and therefore provided a
new framework of the application of cNMF to the
task-related IMRI data analysis.
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2 Applications in fMRI

fMRI as a window into the brain has been suc-
cessfully applied in many research areas such as maps
of somatosensory systems ¥’ higher cognitive pro-
cesses ® 4 and human memory systems > 2 . Re-
cently scientists in China have done a lot of work to

53 54

study the human emotion and the acupunc-

ture > which attracts much attention.

Yang et al. 3 discussed the gender differences
during human emotion processing using International
Affective Picture System IAPS in an event-related
fMRI study. The results indicate that the activation
of left postcentral gyrus and left inferior parietal lob-
ule by positive pictures compared with neutral pic-
tures was observed in male but not in female when
p»<0.005. Whereas
BOLD signal response in bilateral putamen right
amygdala bilateral para-hippocampal gyrus bilateral
occipital gyrus BA19 18  right temporal gyrus and
the bilateral cerebellum Fig. 3 a In the group
analysis of the brain activation when comparing posi-
tive pictures versus neutral pictures in the contrast
p»<0.005 left middle occipital
gyrus left middle frontal gyrus BA10 and right
para-hippocampal gyrus remained significant. Nega-
tive emotional pictures elicited a significant activation
of left thalamus bilateral pons left midbrain left
putamen left cerebellar tonsil and the right superior
temporal gyrus BA22 in female when the threshold
was set to p<<0.001. There is no significant activa-

female showed a significant

male > female

tion found in male. Based on a hypothesis of amyg-
brain
activation test was conducted at the significance level
»<0.01. The activation was found only in female in
left amygdala and right insula as shown in Fig. 3 b .

dala and insula activation to aversive stimuli

Positive vs.neutral

Y

il Lk

Negative vs.neutral

B

(b)

Fig. 3. Brain activation in male and female when viewing positive
versus neutral pictures and negative versus neutral pictures.

This work has revealed that female has more ac-
tivation by negative stimuli compared to neutral in

midline limbic structures including thalamus mid-
brain and cerebellum. One possible reason is that fe-
male showed more attention to the feeling state en-
gendered by emotional stimuli and greater overt re-
sponse possibly for social reasons. They tested brain
activation at the significance threshold of p<0.01 in
order to find whether amygdala and insula are activat-
ed. Only female demonstrated left amygdala activa-
tion and right insula activation. This study indicates
that female has more sensitive central processing to
aversive materials in general. This result may explain
the higher depression rate in women. In general fe-
male shows more frequent activation in the basal gan-
glia under either positive or negative stimuli. In posi-
tive emotions basal ganglia may play a pivotal role in
broadening the repertoire of accessible thoughts and
actions which result in exploratory behavior and skill-
building
functional loops in the basal ganglia that implement a
wide range of thoughts and behavior. In aversive sit-
uation the basal ganglia may develop a specific role
for threat leading to more focal stereotyped respons-
es.

leading to the activation of a number of

This is one of the few studies using the images of
IAPS to illustrate gender differences in recognition of
positive and negative emotions. Consistent with pre-
vious findings it concludes that male and female em-
ploy different sets of neural correlations to process
positive and negative pictures. It is more noticeable
when they were processing negative pictures than

positive pictures.
3 Conclusions and future studies

fMRI is a noninvasive examination with the ex-
cellent spatial resolution more and more scientists
And many algo-
rithms have been performed to reveal the intrinsic re-
lationship between the neuronal activity and the mea-
sured signals. Most of the above mentioned methods
have dealt with linear systems. This is obviously inac-

choose it as the research means.

curate because of MRI principles. We plan to find
the intrinsic geometry of the signal space which take
an appropriate measurement. Another approach is the
threshold selection which is the key point in fMRI
signal detection. Different threshold leads to different
results such as the number of the activated voxels or
areas. A fine algorithm must contain a fine threshold
selection criterion. The third question is the smooth-
ing in space and time. Smoothing in space enhances
the SNR of the data and allows intersubject averaging
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by blurring differences in gyral anatomy between sub-
jects. On the other hand {MRI has high anatomical
resolution and so there is a tradeoff between the de-
gree of smoothing and the spatial resolution. An ap-
propriate noise reduction technique should be further
considered. The functional integration is another de-
mand that we should seriously deliberate. Brain
works by function segregation and integration. Func-
tion segregation assumes that different brain area
works individually. This is suitable for simple tasks
such as in Broca’ s language areas. While brain
works many areas are involved in the task and how
these areas connected and what is the relationship be-
tween them should be investigated. Currently most
researches have focused on the functional segregation
instead of integration. More efforts should be taken
for functional integration. Finally compared to the
electroencephalogram  EEG and magnetoen-
cephalography MEG  the temporal resolution is
rather poor in fMRI. How to combine EEG MEG
and fMRI techniques to improve both the spatial and
temporal resolution is a challenging task % .
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