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Abstract: As the most accurate model for simulating light propagation in 
heterogeneous tissues, Monte Carlo (MC) method has been widely used in 
the field of optical molecular imaging. However, MC method is time-
consuming due to the calculations of a large number of photons propagation 
in tissues. The structural complexity of the heterogeneous tissues further 
increases the computational time. In this paper we present a parallel 
implementation for MC simulation of light propagation in heterogeneous 
tissues whose surfaces are constructed by different number of triangle 
meshes. On the basis of graphics processing units (GPU), the code is 
implemented with compute unified device architecture (CUDA) platform 
and optimized to reduce the access latency as much as possible by making 
full use of the constant memory and texture memory on GPU. We test the 
implementation in the homogeneous and heterogeneous mouse models with 
a NVIDIA GTX 260 card and a 2.40GHz Intel Xeon CPU. The 
experimental results demonstrate the feasibility and efficiency of the 
parallel MC simulation on GPU. 

©2010 Optical Society of America 
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1. Introduction 

As a rapidly developing biomedical research field, molecular imaging is defined as the in vivo 
characterization and measurement of biological processes at the cellular and molecular level 
[1,2]. Among molecular imaging, optical molecular imaging techniques, especially 
fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT), have 
been attracting more and more attention due to the advantages of low cost, high sensitivity 
and nonionizing radiation [3–6]. The study of light propagation in biological tissue is the key 
problem of optical molecular imaging and many methods have been introduced [7]. 

Monte Carlo (MC) method is firstly introduced to study the light propagation in tissues by 
Wilson et al. [8]. Being a statistical method, MC method is then improved by many 
researchers to achieve a more accurate result. Prahl et al. introduced the anisotropy and 
internal light reflection into the light propagation [9]. For the light propagation in complex 
heterogeneous medium, Wang et al. proposed a MC modeling of light transport in multi-
layered tissues (MCML) which has been widely used in the field of optical molecular imaging 
until now [10]. Boas et al. described a MC code ‘tMCimg’ based on a voxelized model [11]. 
Li et al. developed a MC simulation platform ‘MOSE’ based on a triangle mesh model [12]. 
The code ‘TriMC3D’ developed by Margallo-Balbás et al. is based on a triangle model 
combined with an octree organisation [13]. MC method has been generally considered as the 
gold standard of modeling light propagation in heterogeneous tissues and used to validate the 
results obtained by other models. But the main drawback of MC method is the extensive 
computational burden. Various efforts have been proposed to reduce the simulation time. 
Wang et al. proposed a hybrid model of MC simulation and diffusion theory [14]. Zolek et al. 
employed certain approximations to the calculations of logarithmic and trigonometric 
functions [15]. Alerstam et al. proposed a white MC model for time-resolved photon 
migration [16]. However, these acceleration techniques introduce diffuse approximation, the 
approximation of function, or the scaling transformation, which are all at the expense of the 
precision or the flexibility of the MC method. 

Further more, MC simulation could be sped up by the parallel computation, such as CPU-
clustered supercomputers. However, traditionally supercomputers are neither readily available 
nor accessible to most researchers and clinical users due to the prohibitively high cost of 
facility deployment and maintenance. Recently, a new parallel approach using general-
purpose graphic processing units (GPUs) has been adopted to speed up the MC simulation. 
GPU is well suitable for the problems that can be parallel executed due to its special 
architecture. Compared to CPU clusters, GPU is easier to access and maintain because it is 
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much less expensive. Alerstam et al. have shown that GPU-based acceleration could be 
applied in MC simulation and obtained a massive speedup over traditional CPU code [17]. 
Fang et al. developed a parallel code named Monte Carlo eXtreme (MCX) based on 
‘tMCimg’ [18]. But GPU parallel computation on triangle mesh model has not been emerged 
until now. Compared to the multi-layered model or the voxelized model, triangle meshes 
based geometry could realize a more flexible space structure and more precise boundary 
[12,13]. We report a GPU-based MC simulation of light propagation in complex 
heterogeneous tissues in this paper, and the tissue surfaces are constructed by triangle meshes 
recovered from MRI or micro CT data. On the basis of compute unified device architecture 
(CUDA) developed by NVIDIA [19], the parallel computation of MC simulation on GPU is 
realized and evaluated on both the homogeneous and heterogeneous models. The 
experimental results demonstrate the feasibility and efficiency of the proposed method. 

This paper is organized as follows. The simulation of MC-based light propagation in 
heterogeneous tissues is first introduced in section 2.1. Section 2.2 briefly presents the CUDA 
based programming. In section 2.3, the parallel implementation of MC simulation based on 
CUDA is presented. The computational time of the MC simulation implemented on CPU and 
GPU is discussed in section 2.4. Section 3 presents the accuracy and the computational 
efficiency of the proposed method. Finally, conclusions are presented and the future work is 
summarized in section 4. 

2. Method 

2.1 Monte Carlo method 

The MC method is based on randomly constructing a set of trajectories of photons 
propagation in tissues while the stepsize and direction of each trajectory depends on the 
absorption and scattering properties of tissues. Many researchers mentioned above have 
developed many programs to simulate light propagation in complex heterogeneous tissues. 
MCML described an external infinitely narrow beam and a multi-layered model. The program 
‘tMCimg’ is based on an external pencil-beam and a voxelized model. However, the shapes 
of the internal light source and tissues in FMT or BLT are both arbitrary with limited size 
which cannot be simulated by the previous programs. To deal with these problems, Molecular 
Optical Simulation Environment (MOSE) based on MC method is developed by our group for 
the simulation of light propagation in complex heterogeneous tissues whose surfaces are 
constructed by triangle meshes [12]. 

 

Fig. 1. Tissue structure in MOSE. Tissue 1 is the outermost tissue, Tissue 2 and 3 are both the 
internal tissues. Shape 1 is the boundary between Tissue 1 and ambient medium and 
corresponding to Tissue 1. Shape 2 is the boundary between Tissue 1 and Tissue 2 and 
corresponding to Tissue 2, so do Shape 3. 

MOSE is a sequential version of MC simulation executed on CPU and the model 
described in MOSE is constructed by different numbers of tissues represented by independent 
optical properties and regions. A two-dimensional example of the tissue structure is shown in 
Fig. 1. For the convenience of description of the tissue structure and programming of the MC 
simulation, the tissues are separated into two different types: internal tissue and outermost 
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tissue. The tissue that has intersection with the ambient medium is defined as the outermost 
tissue and other tissues are defined as the internal tissues which are enclosed by the shape of 
the outermost tissue. The boundaries of the internal tissues are described by independent 
shapes without intersections and the regions of which are the parts included by the shapes, 
respectively. Correspondingly, the outmost tissue has the biggest shape, but the exact region 
of which is the part between the biggest shape and other shapes, and the biggest shape is the 
boundary between the outmost tissue and the ambient medium. 

Except for the tissue structure, the process of light propagation in tissues based on MC 
method is similar to MCML, so the elaborate on all aspects of the process is skipped. Figure 2 
shows the flowchart of the MC simulation which is slightly different from that in MCML. In 
this paper, the GPU-based parallel MC simulation named gpu-MOSE is based on the 
modification of MOSE [20]. 

 

Fig. 2. Flowchart of photon propagation in tissues based on MC method. 

As shown in Fig. 2, the photon is first generated from the light source. The weight of each 
photon is determined through dividing the total power of light source by the number of 
photon. The initial position and direction are generated according to the shape and the 
emergent angle of the light source. Once launched, the photon is repeatedly moved until it is 
terminated. There are three ways for a photon to terminate its propagation. First, it escapes the 
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outermost tissue to the ambient medium. Second, the photon may be absorbed by tissues 
while its weight drops below the predefined threshold. Third, the total time of flight (TOF) 

exceeds a predefined maximum value 
max

T  which is set to 20ns in our work. During the 

propagation, the photon will transmit across the tissue boundary and we have to decide 
whether the photon enters into another internal tissue, outmost tissue or the ambient medium. 
If the photon is transmitted to the internal tissue or the outmost tissue, it will continue 
propagating with updated direction and stepsize. If the photon is transmitted to the ambient 
medium, the photon weight is scored into transmittance matrix depending on where the 
photon escapes. 

2.2 CUDA-based GPU programming 

The general-purpose computing on GPU (GPGPU) is well-suited for the data-parallel 
computational application in which the problem is divided and executed on a number of 
processor units in parallel. General graphic cards such as the GeForce series and the GTX 
series typically have 1-30 streaming multiprocessors (SMs) which are used to implement the 
parallel computation [19]. The multiprocessor employs an architecture called single-
instruction, multiple-thread (SIMT) to manage hundreds of threads running several different 
programs. The CUDA platform allows the use of an extended C language to program the 
GPU. 

In CUDA, the CPU is considered as the host while the GPU is called the device that 
operates as a coprocessor to the host. The threads executed on the device are grouped to 
thread block and the blocks are then organized into thread grid. The total number of threads is 
the number of blocks times the number of threads per block. CUDA assumes that both the 
host and the device maintain their own dynamic random access memory (DRAM), referred to 
as host memory and device memory, respectively. The device memory is an off-chip memory, 
mainly including local, global, constant and texture memory spaces, which is large but 
relatively slow (400-600 clock cycles of access latency). In addition, a GPU also contains a 
fast on-chip memory, including registers, shared memory, constant cache and texture cache 
spaces, which is small but much faster (below 4 clock cycles of access latency) than the off-
chip memory. The read-only constant cache and texture cache can effectively speed up the 
access speed of the constant memory and texture memory spaces, respectively. 

2.3 CUDA-based parallel MC simulation 

In the parallel computation based on CUDA, the efficiency of the code is largely related to 
the memory management. Due to the limitation on the size and access speed of memory 
spaces within device, the data structures used in parallel MC simulation are specially 
designed to improve the computational efficiency. 

In our work, the tissues are assigned different optical properties in reality, including the 

absorption coefficient 
a
µ , the scattering coefficient 

s
µ , the anisotropy coefficient g  and the 

relative index of refraction n . These optical coefficients keep unchanged during the 

computation and the number of which is rather small so that they are stored in constant 

memory. The tissue shapes are constructed by large number of triangle meshes and are 
independent to each other. The vertex data of triangle meshes for all tissues will be frequently 
accessed during the parallel computation. Because the constant memory is too smaller to store 
the vertex data, the vertex data have to be stored in texture memory. 

Because the tissue surfaces are constructed by triangle meshes, there are two important 
problems need to be considered during the MC simulation. One is to determine the relative 
position between the photon and the tissue surface constructed by triangle meshes, and the 
other is to compute the intersection between the photon path and the tissue surface. The two 
problems are both solved by a ray-triangle intersection evaluation [21,22]. A strategy of 
spatial partition is adopted to speed up the solving process as mentioned below. 

In the strategy of spatial partition, a two-dimensional searching list for each tissue is 
firstly constructed. As shown in Fig. 3(a), the tissue surface is projected onto a 2D plane and 
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the projection of the triangle meshes is then partitioned by a uniform grid. Each grid cell is 
corresponding to an index list. The index of a triangle mesh is added to the index list if its 
projection overlaps the grid cell. The searching list for each tissue is constructed by 
assembling all the index lists. After all the searching lists for all tissues are constructed, the 
photon position and the path are also projected onto the 2D grid plane to determine the 
relative position and the intersection during the simulation, respectively [See Fig. 3(b)]. With 
the help of the partition strategy there would be small number of triangle meshes, belonging 
to the lists of grid cells (marked with red color in Fig. 3) intersected with the projection of the 
photon position or the photon path (marked with blue color in Fig. 3), need to be checked 
while conducting the ray-triangle intersection evaluation. Therefore, the time for determining 
the relative position of the photon or the intersection between the photon path and the tissue 
surface is reduced greatly. 

 

Fig. 3. (a) 3D view of the tissue surface which is projected onto the 2D plane grid. Points A 
and B are the starting and end points of a step (marked with blue color), respectively. A is the 
external point of the tissue and B is internal point of the tissue. (b) 2D view of the grid and the 
projections of the tissue and the photon path, A´ and B´ are the projections of points A and B, 
respectively. The grid cells intersected with the projection of the photon path are marked with 
red color. 

Although the two-dimensional searching list can speed up the evaluation of ray-triangle 
intersection, the efficiency of the list executed on GPU is not as good as on CPU due to the 
discontiguous addressing of the list. Therefore, the index lists are merged into an one-
dimensional searching array for each tissue, and all the searching arrays for all tissues are 
then merged into an one-dimensional total searching array. Although the array would keep 
constant during the simulation, the size of it is so big that it cannot be stored in constant 

memory as the optical properties of the tissues. In addition, access to it is related to the photon 
position during the MC simulation. For the position is random changed, it will be random-
accessed accordingly. Therefore, texture memory is chosen to store the total searching array 
since it has enough memory space and suitable for the random-access. 

Accessing global memory is an important part in GPU programming and this memory 
space is also used in parallel computation. Some data, including absorption and transmittance, 
need to be recorded and modified during the simulation process. Therefore, these data need to 
be recorded in the global memory. In our work we just record the transmittance for the 
comparison between CPU and GPU. During the simulation, different threads may access a 
same memory address while recording transmittance and the mutual interference will cause 
errors to the transmittance. This problem can be solved by the atomic operation which can 
perform the operation without interference from other threads, however, the atomic functions 
provided by CUDA cannot support the addition of single-precision floating-point until now. 
On the basis of the basic atomic functions, an atomic function for the float addition has been 
developed by Lensch and is adopted by us to record the transmittance [23]. The transmittance 
results on CPU and GPU are recorded and compared in section 3. Because the atomic 
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operation will prevent other threads to access the address while it is accessed by one thread, 
and the global memory is an off-chip memory with a large access latency, the efficiency of 
the parallel computation will be affected by the recordance of the transmittance. 

Based on the above analysis, the flowchart of the parallel MC simulation and the specific 
usage of the memory spaces are shown in Fig. 4. In the parallel computation, the threads are 
executed in parallel to complete the MC simulation. During different stages of the parallel 
computation, the threads will access different memory spaces according to the type of 
accessed data. For example, the texture memory will be accessed for the vertex data or the 
total searching array, the constant memory will be accessed for the optical properties of the 
tissues, the global memory will be accessed for storing the transmittance results. 

 

Fig. 4. Flowchart of the parallel MC simulation based on CUDA. 

2.4 Computation time 

Given the total number 
p

N  of photons, the number 
b

N  of blocks and the number 
t

N  of 

threads per block. As shown in Fig. 5, the execution process and time cost of MC simulation 
on CPU and GPU are described by pseudocode, respectively. For the serial computation on 

CPU, the MC simulation is executed for 
p

N  loops. For the parallel computation on GPU, the 

MC simulation on each thread is executed for ( )
p b t

N N N×  loops. 
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Fig. 5. Pseudocode description of MC simulation implemented on CPU and GPU, respectively. 

The computational time for the MC simulation on CPU and GPU can be calculated 
respectively by 

 
0 0

1

pN

cpu cpu i

i

T T T T T
=

′= + = +∑   (1) 

 

( )

1

0 0

1,2...

( max( ) )

p b tN N N

j i

i b t

gpu gpu c j c

T T
j N N

T T T T T T T

×

=


′=

= ×
 ′ ′ ′′= + = + + +

∑
  (2) 

where 0
T

 is the time for the initialization executed on CPU before the MC 

simulation. c
T ′

 and c
T ′′

 are the computational time for copying data from host 

to device and from device to host, respectively. i
T  and i

T ′
 are the 

computational time of each photon propagation in tissues on CPU and GPU, 

respectively. cpu
T ′

 is the total amount of time for simulating all photons on 

CPU. j
T

 is the computational time for each thread to run 
( )

p b t
N N N×

 photons 

on GPU. gpu
T ′

 is the simulation time on GPU without the initialization time. 

cpu
T

 and gpu
T

 are the total computational time for the MC simulation on CPU 
and GPU, respectively. According to Eq. (2), the computational time on GPU 
depends on the maximum value among runtimes of all threads. Ideally, the 
total amount of time on GPU will decrease with the increase of the total 
number of threads. However, the linear decrease of computational time shown 
in Eq. (2) will be broken while the total number of threads is larger than a 
specific value determined by the hardware configuration of GPU. In addition, 
the time needed for transferring data between host and device is much bigger 
than that within devices. Thus, the communication time needs to be 
minimized to maximize the efficiency of parallel computation on GPU by 
moving more code from the host to the device, even if that means running 
kernel with low parallelism computations. 

3. Results 

According to the above analysis, gpu-MOSE based on CUDA is developed for speeding up 
the MC simulation. Various experiments are conducted to validate the accuracy and 
performance of gpu-MOSE and the results are illustrated as follows. Our work presented in 
this paper is implemented on a GTX 260 card which contains 24 multiprocessors, each of 
which contains 8 scalar processors (SPs). 
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3.1 Comparison to MCML 

The program MOSE and gpu-MOSE are firstly verified through the comparison with MCML 
and two experiments are conducted. MCML has been widely used for the MC simulation of 
light propagation in tissues and has been recognized in the field of optical imaging. For the 
phantom of infinite slab in MCML is not supported in MOSE and gpu-MOSE. Therefore, the 
infinite slab is approximated by a flattened cylinder with 500mm of radius, centered at origin 
in MOSE and gpu-MOSE. The light source is an infinitely narrow pencil-beam with 1.0nW 
total power. The direction of the pencil-beam is parallel to the + Z axis and the origin is the 
incident point. The results about MCML shown below are obtained from [10]. 

The first experiment is based on a homogeneous slab with a matched boundary and the 
parameters are shown in Table 1. Ten MC simulations with each of 50000 photon packets are 
conducted to compute the averages and the standard errors (standard deviations of the 
averages) of the total reflectance and total transmittance, the results are shown in Table 2. 

The second experiment is conducted in a semi-infinite scattering phantom with a 
mismatched boundary and the parameters are shown in Table 3. Ten MC simulations with 
each of 5000 photon packets are conducted to compute the averages and the standard errors of 
the total reflectance and total transmittance. The results are shown in Table 4. Since the 
phantom is a semi-infinite medium the transmittance is zero. 

Table 1. Simulation parameters of the phantom 

a
µ

(1/mm) s
µ

(1/mm) 
g

 
n  d (mm) 

1 9 0.75 1 0.2 

Table 2. The averages and the standard errors of the total reflectance and total 
transmittance 

Program 
Reflectance Transmittance 

Average Standard error Average Standard error 

MCML 0.09734 0.00035 0.66096 0.00020 

MOSE 0.09746 0.00157 0.66067 0.00159 

gpu-MOSE 0.09701 0.00082 0.65897 0.00094 

Table 3. Simulation parameters of the phantom 

a
µ

(1/mm) s
µ

(1/mm) 
g

 
n  

d (mm) 

1 9 0 1.5 semi-infinite medium 

Table 4. The averages and the standard errors of the total reflectance 

Program 
Reflectance 

Average Standard error 

MCML 0.25907 0.00170 

MOSE 0.26110 0.00333 

gpu-MOSE 0.26010 0.00406 

As shown in Table 2 and 4, the results calculated by MOSE and gpu-MOSE agree with 
that calculated by MCML. Thus the MC simulation performed by MOSE or gpu-MOSE is 
feasible and reliable. 

3.2 Performance evaluation 

Three experiments with different models are performed to evaluate the performance of gpu-
MOSE. The tissues are independently reconstructed from a volumetric mouse atlas provided 
by Dogdas [24]. The tissue surfaces are constructed by different number of triangle meshes 
and Fig. 6 shows the 3D surface rendering of these tissues. The tissue optical parameters 
summarized by Alexandrakis [25], as well as the absorption coefficients of oxy-haemoglobin 
(HbO2), deoxy-haemoglobin (Hb) and water reported by Prahl [26], are assigned as listed in 
Table 5. 
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Fig. 6. 3D surface rendering of the tissues used in the experiments. The bounding box of the 
mouse phantom is 38 × 99.2 × 20.8 (mm). The point light source is located near the stomach 
marked with green color and its coordinate is (20, 50, 15) (mm). The picture is obtained from 
MOSE. 

Table 5. Simulation parameters of the tissues 

Tissue a
µ

(1/mm) s
µ

(1/mm) 
g

 
n  

Number of triangle 
meshes 

adipose 0.005045 20.4545 0.94 1.35 2,000-100,000 

skeleton 0.08138 26.0896 0.9 1.50 25,000 

heart 0.078594 6.7104 0.85 1.42 3,500 

lung 0.262956 36.818 0.94 1.38 6,000 

kidney 0.088107 16.846 0.86 1.45 2,500 

stomach 0.015044 18.4973 0.92 1.40 4,000 

In the following experiments, an isotropic point source with 1.0nW total power is 
assumed as the light source and sampled by 10

6
 photons. The CPU code of MC simulation is 

executed on a 2.40GHz Intel Xeon processor. Each data shown in Fig. 7 is the averaged value 
of three experiments. 

In the first experiment, the relationship between the speedup and the number of threads 

(
b t

N N× ) is analyzed with different number of threads and the experimental result is shown 

in Fig. 7(a). The phantom is assumed to be homogeneous and is assigned the adipose optical 
properties. The number of the triangle meshes greatly influences the initialization time, so the 
phantom, whose surface is constructed by 5 × 10

4
 triangle meshes, is used in this experiment 

to reduce this effect. Because the hardware resource (the number of SMs, stack, register and 
so on) on GPU is limited, the number of threads cannot be increased arbitrary so that the 
number of threads varied from 16 × 16 to 192 × 192 in this experiment. As shown in  
Fig. 7(a), the speedup becomes bigger at first and then keeps basically the same while the 
number of threads larger than 64 × 64. This result can be explained by the structural design of 
GPU, in which the performance of parallel computation on GPU is proportional to the utility 
rate of hardware resource on GPU, rather than the number of threads. At the same time, the 
utility rate of hardware resource is proportional to the number of threads at first, so the 
speedup increases correspondingly. However, the utility rate reaches the maximum 
approximately while the number of threads larger than a certain value which is 64 × 64 in this 
experiment, thus the speedup presents little change after the number of threads larger than 64 
× 64. Through the experiment, we get the conclusion that the speedup is related to the utility 
rate of hardware resource and can be further increased through improving the utility rate of 
hardware resource on GPU. 
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For the purposes of the following experiments are irrelevant to the number of threads, the 
number of threads are set as 64 × 64. 

The second experiment is conducted to study the relationship between the speedup and the 
number of triangle meshes. As shown in Fig. 7(b), the speedup is dramatically decreased with 
the increase of the number of triangle meshes. The reason is that the calculation cost and the 
number of access memory spaces on GPU are both proportional to the number of triangle 
meshes. The transmittance in MC simulation is recorded according to the position of photon 
escapes. In our work, the size of the transmittance matrix is equal to the number of the 
triangle meshes. Therefore, the address range of memory space and the time for storing the 
transmittance will vary with the number of the triangle meshes. The above analysis is 
supported by the results shown in Fig. 7(b). 

In the third experiment, we perform the MC simulations based on heterogeneous models 
to analyze the influence of the branch and loop statements in the parallel computation. The 
number of the branch and loop statements is proportional to the number of tissues in the MC 
simulation. However, the parallel computation on GPU is not suitable to the branch and loop 
statements according to the structural design mentality of GPU. The simulations are 
performed with different number of tissues to demonstrate the above analysis. As shown in 
Fig. 7(c), time increased on GPU is more quickly than that on CPU while increasing the 
number of tissues. The speedup becomes smaller gradually and the experimental results 
demonstrate our deduction. 

 

Fig. 7. (a) Speedup varies with the number of threads. (b) Speedup varies with the number of 
triangle meshes. (c) Speedup varies with the number of tissues. (d) Relative errors between the 
transmittances obtained from CPU and GPU. 

From the comparisons between the speedup 
cpu gpu

T T′ ′  and 
cpu gpu

T T , we can see that the 

initialization time also plays an important role. The initialization before parallel computation 

is necessary and takes some time, so the speedup 
cpu gpu

T T  is always smaller than 
cpu gpu

T T′ ′  

which can be seen from the Fig. 7(a)–7(c). The second experiment [Fig. 7(b)] demonstrates 
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clearly that the initialization time is proportional to the number of triangle meshes. The 

speedup 
cpu gpu

T T  is clearly affected by the initialization time while the number reaches 10
5
. 

The accuracy of the parallel computation is also considered in our work. The total 
transmitted power calculated through the transmittance matrix is compared in experiment 3. 

The absolute values of relative errors (RE) ( ) /
gpu cpu cpu

P P P− are less than 0.15% as shown in 

Fig. 7(d), which show the reliability of the proposed GPU-based parallel MC simulation. 

4. Discussion and conclusions 

In this paper we develop a GPU-based parallel MC simulation for light propagation in 
complex heterogeneous tissues whose surfaces are constructed by different number of triangle 
meshes. The experimental results demonstrate the feasibility and efficiency of the GPU-based 
parallel computation. The parallel computation based on GPU has the advantage over that 
based on CPU due to the low cost and easy accessibility while achieve the same speedup. 
However, the speedup reported in other papers is approximately 10

2
-10

3
 times, which is much 

better than the value of about 10 times achieved in our work [17,18]. Through the 
experiments we get the reason is that the acceleration performance of GPU is affected by 
many factors, which are summarized as follows. 

First, the acceleration performance is primarily related to the number of threads. Through 
the experimental results shown in Fig. 7(a), we can found that the speedup is non-linearly 
changed with the number of threads. In addition, the acceleration performance vary with 
different hardware configuration, including the number of multiprocessors, the memory size, 
the cache size, the clock rate and so on, even for the same number of threads. Generally 
speaking, the speed of the parallel computation is proportional to the level of the hardware 
configuration. The GPU card GTX 260 used in this paper has only 24 multiprocessors, 
896Mb memory and 1.24 GHz. It can be predicted that a higher speedup factor would be 
obtained for a higher level of GPU card such as Tesla C1070 which has 4 GPUs, each with 30 
multiprocessors. The usage of the atomic operation would reduce the parallel efficiency, but 
because of the few number of using atomic operation in our work, the time used for atomic 
operation accounted for a small proportion of the whole simulation time. 

Second, the size of the data has a large influence on the speedup. The time needed for 
accessing data stored in different memory spaces is quite different. The memory spaces on 
GPU are assigned according to the date type and data size. There are a large number of data, 
including the triangle meshes and the simulation results, need to be stored in texture memory 
or global memory for the other memory space is too small. These data need to be used 
frequently during the simulation, which means that the texture memory or global memory 
needs to be accessed frequently. The time needed to access texture memory or global memory 
is much longer than that needed to access cache. Therefore, the extra time for accessing data 
on GPU is much longer than that on CPU with the increase of the data volume. The 
experimental results shown in Fig. 7(b) demonstrate this relationship. In our work, we have 
done our best to optimize the data store structure as far as possible for the purpose of reducing 
the number and the time cost of data access during the simulation. 

Last, the complexity of the code for implementing the MC simulation reduces the 
efficiency of the parallel computation. The SIMT architecture at present is significantly 
affected by the flow control instruction (if, switch, do, for, while). In our program, the 
number of these statements is considerable and proportional to the number of the tissues, 
which can be analyzed from Fig. 1. The speedup would decrease with the increase of the 
number of tissues. This conclusion is demonstrated by the experimental results shown in  
Fig. 7(c). The efficiency of the parallel computation would be improved while reduce the 
number of the control instruction. 

Outwardly the bottlenecks mentioned above all refer to the nature of GPU, the latter two 
factors are both relevant to the deficiency of the MC method proposed in this paper actually. 
Although the triangle mesh based model has the advantage of a more flexible space structure 
and more precise boundary over other models, the number of triangle meshes would be 

#123006 - $15.00 USD Received 19 Jan 2010; revised 15 Feb 2010; accepted 11 Mar 2010; published 17 Mar 2010

(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS  6822



enormous for a good description of the model, and the triangle meshes are all different so that 
they have to be stored independently. Consequently, the huge amount of data is generated and 
will be accessed frequently during the MC simulation. In addition, the complex structure of 
the tissues used in our MC method leads to the complex program in which the number of 
control instruction is large and proportional to the number of tissues. Therefore, the method 
proposed in this paper doesn't make full use of the parallel computation on GPU. 

Generally speaking, the parallel computation based on GPU is an excellent choice to 
reduce the computational time for implementing the MC simulation. With the fast 
development of GPU and the improvement of the programming of MC simulation, the 
bottlenecks mentioned above will be solved gradually and the speedup will have larger 
increase. In addition, the initialization in MC simulation can also be parallelized to further 
increase the speedup. We will continue to work on the GPU-based parallel computation in 
future. GPU-based parallel computation will play an important role in the field of optical 
imaging. 
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