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Abstract: As a new mode of molecular imaging, bioluminescence
tomography (BLT) has become a hot topic over the past two years. In this
paper, a multilevel adaptive finite element algorithm is developed for BLT
reconstruction. In this algorithm, the mesh is adaptively refined according to
a posteriori error estimation, which helps not only to improve localization
and quantification of sources but also to enhance the robustness and
efficiency of reconstruction. In the numerical simulation, bioluminescent
signals on the body surface of a heterogeneous phantom are synthesized
in a molecular optical simulation environment (MOSE) that we devel oped
to model the photon transportation via Monte Carlo simulation. The per-
formance of the algorithm is evaluated in numerical tests involving single
and multiple sources in various arrangements. The results demonstrate the
merits and potential of the multilevel adaptive approach for BLT.
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1. Introduction

Molecular imaging, especially small-animal molecular imaging, is a rapidly developing bio-
medical imaging field [1]. The goal of molecular imaging is to depict non-invasive in vivo
cellular and molecular processes sensitively and specifically, such as monitoring multiple mole-
cular events, cell trafficking and targeting. It is well recognized that molecular imaging may be
instrumental for tumorigenesis studies, cancer diagnosis, metastasis detection, drug discovery
and devel opment, and gene therapies[2, 3, 4]. Dueto the high performance and low cost of the
photonics-based imaging modalities, optical molecular imaging has attracted much attention,
which includes bioluminescence tomography (BLT) [5, 6] and fluorescence molecular tomog-
raphy (FMT) [7].

Bioluminescence has been extensively applied in biology for decades [8], but biolumines-
cence tomography (BLT) was only recently devel oped to reconstruct an underlying source dis-
tribution in a small animal such as a mouse from external optical measurement. Traditionally,
planar bioluminescent imaging detects only surface light signals and cannot generate a depth
location [9]. Although the high detection ability of bioluminescence imaging can’t be provided
with fluorescence imaging due to external exciting light sources, BLT is more ill-posed than
FMT in theory [6, 10]. Generally, atheoretical study shows that the BLT solution is not unique
without sufficient a priori information [6]. Earlier BLT algorithms were developed for asingle
spectral band [11, 12]. Then, based on the wavelength dependence of the optical properties of
the tissues and the spectral characteristics of an underlying bioluminescent source, hyper- and
multi-spectral BLT methods were also developed and obtained promising results in phantom
experiments and mouse studies with single or multiple sources [13, 14, 15]. Furthermore, in
the optical-PET (OPET) system development, Alexandrakis et al. [15] demonstrated the fea-
sibility and limitation of BLT and underlined that the assumption of a homogeneous optical
background was inadequate for BLT reconstruction. At the same time, the importance of a
permissible source region in BLT reconstruction was well recognized [16].

For performanceevaluation of BLT algorithms, the simulation of photon transportationin the
biologic tissues plays an important role [17]. The analytic approach is suitable for the simple
homogeneous cases. The numerical approach is preferablein dealing with the complex geome-
tries. Among various numerical methods, Monte Carlo method is the most precise but the least
efficient. To synthesize realistic optical data, Monte Carlo simulation is usually the method of
choice. Also, the inverse crime is likely to occur when closely correlated computational in-
gredients are used in the forward solver and the inversion scheme [18]. The strategy to avoid
the inverse crime is that the forward solver can’t be relevant to the reconstruction method. In
view of the finite element analysis, the quality of BLT reconstruction is not only related to the
signal-noise-ratio (SNR) of measured data but also to the discretization of the domain. To a
large extent, the finer the discretized mesh becomes, the better the reconstruction is. However,
the overly detailed mesh may aggravate the ill-posedness of the BLT problem and increase the
numerical instability and computational cost. Hence, the optimization of finite element mesh-
ingiscritical inthe BLT reconstruction. In fluorescence tomography, an adaptive finite element
method was proposed to solve the aforementioned dilemmausing adual meshing scheme[19].
Although the dual meshing strategy improves the flexibility of the tomographic algorithm, it
also increases the computational cost and programming difficulty especialy in the adaptive
algorithm.

In this paper, a BLT algorithm is developed based on the adaptive finite element methods
(FEMs), which utilizes the single initial coarse volumetric mesh to recover the source distribu-
tion quantitatively. This diffusion equation model based method also establishes the linear rela-
tionship between the measured data and the unknown source distribution through the permissi-
ble source region concept. Then, the adaptive mesh refinement is performed via decomposing
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the selected mesh elements by virtue of two different a posteriori error estimation techniques
in the forbidden and permissible source regions. In the adaptive procedure, the optimization is
done using a modified Newton method coupled with multilevel and active-set strategies. In the
numerical simulation, bioluminescent signals on the body surface of a heterogeneous phantom
are synthesized in a molecular optical simulation environment (MOSE) that we developed to
model photon transportation via Monte Carlo simulation. In the next section, we present the
BLT framework based on the multilevel adaptive finite element analysis. In the third section,
we eval uate the performance of the proposed algorithm using the MOSE based synthetic data.
In the last section, we discuss the relevant issues and conclude the paper.

2. Methods

2.1. Diffusion approximation and boundary condition

In a bioluminescence imaging experiment, luciferase can be introduced into various types of
cells, organisms, and genesin aliving mouse. Then, luciferinis combined with the luciferasein
the presence of oxygen and ATP to generate bioluminescent signals of about 600nm in wave-
length. The bioluminescent photon in the biological tissue is subject to both scattering and
absorption. In this wavelength range, photon scattering predominates over photon absorption
and the diffusion equation has been widely used in bio-photonics [16, 17, 20]. When the bi-
oluminescence imaging experiment is carried out in a dark environment, the propagation of
bioluminescent photons in the biological tissue can be well modeled by the steady-state diffu-
sion equation and Robin boundary condition[16, 21]:

—V-(D(X)VO(X)) + ta(X)D(X) = S(X) (X € Q) (1-1)

@(X) + 2A(x;n,n")D(x) (v(x)-VD(x)) =0 (x € 9Q) (1-2)

where Q and JQ are the domain and its boundary respectively; ®(x) denotes the photon flux
density Watts/mm?]; S(x) is the source energy density Watts/mm?3]; ua(x) is the absorption
coefficient [mm~2]; D(x)=1/(3(ua(X) + (1—g)us(x))) isthe optical diffusion coefficient [mm],
Us(X) the scattering coefficient [mm~1], and g the anisotropy parameter; v is the unit outer
normal on 9. Given the mismatch between therefractiveindicesn for Q andn’ for the external
medium, A(x;n,n’) can be approximately represented:

A ) ~ 1+R(X)

T 1-R(x) @

where n’ is close to 1.0 when the mouse is in air; R(x) can be approximated by R(x) =
—1.4399n2+0.7099n 1 + 0.6681 + 0.0636n [ 21]. The measured quantity is the outgoing flux
density Q(x) on dQ, that is:

Q) = ~DX) (v-70(x) = 720 (x< ) ®

2.2. Reconstruction based on multilevel adaptive FEMs

Based on the finite element theory [22], the weak solution of the flux density ®(x) is given
through Egs. (1-1) and (1-2):

[ (POO (VOO V() + HaG0@ 0¥ (1) )

+ /a . ﬁ(x)d)(x)‘}’(x)dx - /Q;S(x)‘l’(x)dx ("WxeH Q) @
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where H1(Q) is the Sobolev space. Considering the approximation ®" of the exact solution ®
and the uniqueness solution of the BLT problem, the following error bound was derived [23]:

1 @(S2) = @"(S}) 72090 +V2 | S =S} [IF2(q) < ch™* ©)

where @(S;)eHY(Q) and S; €L%(Q); ®"(S}) and S} corresponding to ®(S;) and S; are
obtained by introducing a regular triangulation 7}, of Q and the finite element space 74; A is
the regul arization parameter; h denotes the maximum element size of the triangulation and c is
a constant independent of 4 and h. Based on Eq. (5), it is beneficial to the improvement of the
BLT solution to reduce the maximum element size h.

The adaptive finite element analysis has been studied over about two decades [24], and in-
volves iterative acceleration, a posteriori error estimation and mesh refinement. In the frame-
work of adaptivefinite element analysis, let { 71, ... %, ...} beasequence of nested triangulation
of the given domain Q based on the adaptive mesh refinement, where the sequence gradually
changes from coarse to fine along with the increase in k. The spaces of linear finite elements
# are introduced on the discretized levels Z, satisfying 71 C ... C % C ... C HY(Q). Now,
we only consider the kth discretized level which includesN # elementsand N 4, vertex nodes.
{wk ..., y/,ﬁpk } isthe nodal basis of the space 7. @ () is an approximation of ®(x) on the kth

discretized level: \
P

D(x) = Y O () (%) (6)
i=1

where ¢X(x) istheith nodevalue. Let {7X, ..., y‘,@sk } be theinterpolation basis functions, S(x) is
approximated by Si(x):

S0 = 3 (0% (6) ™

whereNg, and sf are the number of theinterpolation basis functions and the interpolation nodal
values respectively. The selection of interpolation basis functions yik may be the same with or
different from that of nodal basis functions y, which depends on the choice of source variables
sk. Here, we select element as the basis source variable and piecewise constant functions as the
interpolation basis functions, which are different from the piecewise linear nodal basisfunctions
y/ik. Incorporating Egs. (6) and (7) with Eq. (4), we have

S [ (D) v o [ ) ) e (3 kokdx)s. (8
(2o mrint)ac] o) o (3 wisfs ©

i=1

where 7; isthe ith element; d1; the ith boundary element, on which the integrationis equal to 0
if 7 isnot on the boundary. Then, the matrix form of Eg. (8) can be obtained as follows:

M@y = RSk 9)

Because My is a sparse positive definite matrix, we have ® = Mk*leSk. Theam of BLT is
to reconstruct source distribution Sy from the boundary measured flux data @}, which can be
obtained through removing the interior discretized points values from @ . In order to improve
the BLT reconstruction and reduce the ill-posed nature, a priori knowledge can be obtained
through the surface measurement and anatomical and optical information. Therefore, S can
be divided into the permissible source region Skp and the forbidden region S;;. Deleting those
columnsof M, LR corresponding to Sy, and retaining thoserows correspondingto @' in M, .,
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alinear relationship between the measurable boundary flux @' and the unknown source density
SE is established:
ASE = (10)

Then, we define the following kth level optimization problem to compute source distribution
based on the Tikhonov regularization method:

min  Oy(Sf) = {HAkSE —‘kaHA+'1k77k(SE)} (11)

K —oPock
Sint =S <Ssup

where SK . and SK,, are the kth level lower and upper bounds of the source density; A is the
weight matrix, V|| a = VTAV; A the regularization parameter; and 1 (-) the penalty function.

A modified Newton method with the active set strategy was used to dea with the mini-
mization problem effectively [25]. However, the ill-posedness of the inverse problem resultsin
the sensitivity of the solution to the initial guess SE of SE . Fortunately, our proposed multilevel
adaptive BLT algorithm can improvethe reconstruction stability and accel erate the convergence
speed. First, the optimization procedure is activated using a small initial value S 8 on the coars-
est mesh level. Let the prolongation operator be denoted by | fj*l fromthelevel k tok+1and S|
be the optimized results on the kth level, we have

Y. = 1K1k 12

where 111 can be realized through the inheritance of son elements from father one. Due to
the adaptive mesh refinement, several types of prolongations are utilized depending on the
refinement form of the single element, which will be thoroughly described in the last paragraph
of this subsection. Through correctness of the results on the coarselevel, the optimization on the
fine mesh will become more robust and effective than BLT without such a multilevel meshing.

The switch condition from the kth level to the (k+1)th level and the stopping criterion of the
program are important. In the multilevel adaptive algorithm, we select the norm of the gradient
|96, || and the distance between the last two steps || d¢, || astheindexes, where g, =V©x(S})

and di, =S} —S; " Let e and eék) be the corresponding thresholds. When || g, || is less

than eék) or || diSk || is less than sék), the local mesh refinement will be triggered. Note that
BLT with a coarsely discretized mesh means less unknown variables, higher computational
efficiency and better numerical stability than that with afinely discretized counterpart. Hence
the optimization of the objective function @k(SE ) is indispensable on the coarse mesh. As far
as the stopping criterion is concerned, we utilize the discrepancy between the measured and
computational boundary nodal flux data or the maximum number of mesh refinement L 5« to
evaluate if the whole reconstruction procedure should be terminated, that is, || @ ' — @[ ||< &g Or
k> Lmax, Where || @' — @y || is the error energy norm and eq, denotes the stopping threshold.

A posteriori error estimation plays asignificant rolein the multilevel adaptive algorithm [26].
To guarantee a quasi-uniform mesh of the whole triangulation .7y and increase the measured
points on the domain boundary where the flux density @ has a sharp gradient, two different
error estimates are used in the forbidden and permissible source regions, which are based on
the hierarchical defect correction technique [26] and the direct maximum selection method.
The permissible source region can be decided through incorporating various types of obtain-
ablea priori knowledge, such as optical, biomedical, physiological and anatomical information
and so on, which may reduce the non-uniqueness of the BLT problem. Therefore, on a coarse
mesh which bringsfew discretized elementsin the permissible source region, the elements with
higher values of the optimization results most likely represent actual source locations despite
they may look larger and darker than the actual. By selecting these elements for refinement,
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the BLT solution will be improved in general. In the forbidden region, the quadratic finite
element spaces {#4,... %k, ...} are defined corresponding to the linear finite element spaces
{",...%,...} to perform the hierarchical defect correction based error estimation. On the kth
mesh level, let ey, be an error between an approximated solution (i>¢/k~0n the linear finite el-
ement space 7 and the real one ®. After the approximated solution @y, is obtained on the
quadratic finite element space %%, the total error ey, between ® and ®y, is approximately

equal to the sum of e, and e?fkk which denotes the error between @, and @, . In the space &
obtained by the decomposition of % into ¥, and &k, i.e. %= 7 & &k, the approximation e”ffkk
to er can be made as:

~H 1

e,,/kk =Dg1g (13)
where Dy, is the approximation to M, ; and rg the iterative residual in the space &. With

the error indicator e“?fkk, we may select the portion of the elements in the forbidden region for
refinement.

A reasonable triangulation to the given domain facilitates an implementation of the local
mesh refinement. In the biomedical research field, triangular and tetrahedral elements are pop-
ular for representing the anatomical surface topology and volumetric features [27, 28, 29].
After the triangulation is specified, the local mesh refinement can be done via the so-called
red refinement, which divides a selected tetrahedron into eight son tetrahedral elements [30].
Following the red refinement, the irregular refinement green closure is used to close the trian-
gulation for consistence. In three dimensions, there are 64 possible edge refinement patterns to
deal with. Using symmetry consideration, we restrict ourselvesto four types of irregular refine-
ments shown in Fig. 1(a)-1(d). The red refinement coupled with the green closure reasonably
accomplishes the local mesh refinement.

HDHHD

@ (b) © (d)

Fig. 1. Irregular refinements for the green closure in 3D.

3. Numerical studies

A series of computational experiments was designed to evaluate our multilevel adaptive BLT
algorithm. A heterogeneous cylindrical phantom of 30mm height and 10mm radius was set up.
It consisted of four ellipsoids and one cylinder to represent muscle (M), lungs (Lu), heart (H),
bone (B) and liver (Li), as shown in Fig. 2(a). Optical parameters from the literature [15] and
the references therein were assigned to each of the five components, as listed in Table 1.

3.1. Photon transportation simulation using MOSE

Monte Carlo (MC) method remains a gold standard for photon transportation simulation be-
cause of its accuracy and flexibility [31, 32]. Using MC method, we have been developing a
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@ (b) © (d)

Fig. 2. Heterogeneous phantom. (&) A heterogeneous phantom with a single light source,
composed of muscle (green), lungs (blue), heart (carmine), bone (white), liver (pink) and
source (red); (b) The discretized mesh of the phantom used in MOSE; (c) The initial mesh
used in the adaptive reconstruction; (d) The middle cross-section, including muscle, lungs
and bone.

Table 1. Optical parameters of the heterogeneous phantom.
Material  Muscle(M) Lung(Lu) Heart(H) Bone(B) Liver(Li)

Lz[mm 1] 0.01 0.35 0.2 0002 0035
1s[mm=1 40 23.0 16.0 20.0 6.0
g 0.9 0.94 0.85 0.9 0.9

molecular optical simulation environment (MOSE), which takes 2D/3D analytical models and
microCT/MRI slices to define the object geometry. Using an optimized facet searching method,
the simulation speed of our MOSE is faster by an order of magnitude than some popular pro-
grams, such as the commercia software TracePro [33]. In addition, MOSE is written in Visual
C++ and OpenGL with a user-friendly interface, through which bioluminescent sources, lens
and detectors can be flexibly arranged [34]. In the MOSE simulation, the af orementioned het-
erogeneous phantom was discretized by triangular elements to produce the synthetic data. The
mesh of the phantom in Fig. 2(b) consisted of 34072 triangles and 11499 surface measurement
points with an average element diameter of about 0.5mm.

3.2. Light source reconstruction

nano-Watts/mm*
3.2E-04

H 27E-04
22E-04
17E-04
12E-04

7 0E-05
2.0E-05
z

o

(a) Front view (b) Right view (c) Back view (d) Leftview

nano-Wattsimm®
3.2E-04
H 27E-04
2.2E04
1.7EQ4
1.2E-04
7.0E-05
zZ.DE—OS

a9

— R

nano-Watts/mm®
3.2E-04

H 27604
22E-04
17E-04
1.2E-04
7.0E-05
2 U?-OE

-

7

nano-Watts/mm®
3.2E-04

H 2.7E-04
2.2E-04
1.7E-04
1.2E-04
7.0E-05
2Z OE-05

o,

Fig. 3. Four views of the phantom surface with an angular increment of 90 degrees. Red
lines denote the isoline of the surface light power.
First, a single bioluminescent source was embedded in the right lung. In the MOSE simula-
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tion, aspherical source with 1.0mm radius and 0.238nano—Watts/mm 3 power density was cen-
tered at (—3.0,5.0,15.0), as shown in Fig. 4(a). The source was sampled by 1.0 x 106 photons
and was assumed to obey the uniform distribution. In the reconstruction procedure, the initial
discretization of the phantom was the coarse volumetric mesh in Fig. 2(c), which was rather
different from the mesh used in the forward simulation. The flux density values on the surface
points were obtained by the interpolation between the available values obtained using MOSE.

We set the lower bound S ; = 0.0, the upper bound S, ; a sufficiently large positive number,

the weighted matrix A the unit matrix, the penalty function 1, (X)=XTX and the regulariza-
tion parameter A, = 1.16 x 1010 at each level. In addition, the gradient tolerance e§* and the

distance tolerance eé” were invariable at each level, being equal to 1.0x 1017 and 1.0x 1016
respectively, and the stopping threshold 4, and the maximum number of mesh refinement L max
were set to 2.1x 10~° and 4 respectively. In each adaptive mesh refinement, we refined 50% of
the reconstructed elements based on the direct maximum selection method in the permissible
source region and decomposed 1.5% elements in the forbidden region according to the error
indicator éfﬁ‘.

When the bioluminescent sourceis placed in the phantom or small animal, the peak intensity
attenuation and full width at half maximum (FWHM) of the emitting light varies with the
depth change of source[9]. Despite that the quantitative change is affected by optical property
parameters and light wavelength, the decision of permissible source region is beneficial from
a priori information above. Figure 3 shows four views of the surface light power distribution
with an angular increment of 90 degrees, and red lines as the isoline of light power distribution
depict the diffusive results of source on the phantom surface. Through the difference of surface
light power distribution in four views, we can roughly infer the source position and outline
a permissible source region. Furthermore, we may utilize the obtainable a priori knowledge
including the anatomical information of the phantom, the corresponding optical parameters
and the dependent relationship between FWHM and source depth [9] to specify the domain

Ps ={(x.,y,2)|13.0 < z < 17.0,(x,y,z) €Right lung}

as the permissible source region.
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Fig. 4. Comparison between the actual and reconstructed sources. () BLT reconstruction
in the case of a single light source, and (b) BLT reconstruction in the case of four light
sources.
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Fig. 5. Mesh evolution for the permissible source region in the single light source case. The
green mesh denotes the permissible source region; The red sphere is the actua source. (a)
The first-level reconstruction, (b) and (c) The second- and third-level results, respectively.

To improve the computation speed, our multilevel adaptive algorithm was coded in C++.
When theiinitial guess S9 was set to 1.0x 10~ ®nano—Watts/mm?, the reconstruction procedure
was terminated after two adaptiveiterationsat || @' — ¢ || =2.05 x 10~ °, which took about 150
seconds on an desktop computer with Pentium 4 2.8GHz and 1GB RAM. Thefinal reconstruc-
tion is shown in Fig. 4(a), which has the maximum source density 0.219nano—Watts/mm 3,
The relative error (RE) between the actual source and reconstructed results was 8.0%, which
was computed according to0 RE = |Syecons — Sreat|/Sreal- Although the reconstructed source
was dlightly closer to the phantom surface than the actual source, its center was located at
(-3.20,5.77,15.48) and very close to the actual one. The mesh evolution for the permissible
source region and the reconstructed source is shown in Fig. 5.

In order to compare the reconstructed results from the fixed mesh and the adaptive evolution
mesh, we selected three fixed meshes with an average element diameter of about 4mm, 2mm
and 1mm, respectively. The corresponding reconstructed results on different discretized meshes
are shown in Fig. 5(a) and 6. The quantitative comparison between the fixed mesh of different
discretized scales and the adaptive mesh are shown in Table 2. Incorporating the permissible
source region into the tomographic algorithm, the BLT reconstruction on the coarse and fine
meshes could all localize the bioluminescent source, but the reconstructed results were severely
affected by the size and distribution of the fixed discretized elements, especially on the coarse
mesh. Despite that the position and shape of reconstructed source was improved as the mesh
became finer, the time cost also increased correspondingly. In addition, based on the same
selection of permissible source region, it is noted that the quantitative information of source
density was not remarkably improved as the mesh became finer due to the absence of multilevel

strategy.

Table 2. Comparison between the fixed mesh of three different discretized scales and the
adaptive mesh. Mesh size denotes the average element diameter of reconstructed results.

No. Meshsize(mm) Recons.time(sec.) Actua density Recons. density

1 about 4.0 23.0 0.238 0.0027
2 about 2.0 70.0 0.238 0.045
3 about 1.0 146.0 0.238 0.032
4 about 0.25 150.0 0.238 0.219

Furthermore, the multilevel adaptive algorithm was employed in the case of multiple light
sources. In the experiment, four light sources were placed in the lungs, that is, two sourcesin
the left lung and the other two in the right lung. The power density of each source was the
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Fig. 6. BLT reconstruction in the fixed mesh of different descretized scales. The green mesh
denotes the permissible source region; The red sphere is the actual source. (a) and (b) The
average element diameter of the mesh is about 2mm and 1mm respectively.

same as that in the single source case. The initial permissible source region was set to contain
the lungs between 11.0mm and 19.0mm along the Z-axis direction. The position of the actual
light sources and the final results are shown in Fig. 4(b) and the quantitative information also
summarizedin Table 3. Inthe four-source case, the averagerelative error between the actual and
reconstructed source densities were 32.2%, but the refined tetrahedral elementsrepresenting the
reconstructed sources were around the centers of the actual light sources.

Table 3. Comparison between the actual and reconstructed sources in the four-source case.

No. Actual pos. Recons. pos. Actual density  Recons. density RE

S1  (-3.050,17.0) (-3.72,5.46,15.99) 0.238 0.209 12.1%
S2  (-3.0,5.0,13.0) (-3.64,4.41,14.25) 0.238 0.175 26.5%
S3  (-3.0,-5.0,17.0) (-2.80,-5.98,17.05) 0.238 0.134 43.7%
S4  (-3.0,-5.0,13.0) (-3.78,-5.90,13.29) 0.238 0.127 46.6%

3.3.  Spatial resolution evaluation

To evaluate the spatial resolution of our multilevel adaptive algorithm, we designed a set of ex-
perimental models with two spatially close light sources. The two spherical sources of 1.0mm
radius and 0.238nano-Watts/mm? power density were placed at various edge-to-edge distances
from 1.5mm to 0.5mm. The same initial permissible source region was used in all the experi-
ments, which was set to include the right lung between 11.5mm and 18.5mm along the Z-axis.
Figure 7 compares the actual and reconstructed light sources separated by 1.5mm, 1.0mm and
0.5mm, respectively. Although the tetrahedral elements of the reconstructed sources were adja-
cent to each other, a distinct separation was visible for the 1.5mm and 1.0mm separation. The
comparative datafor the 1.5mm and 1.0mm instancesis al so summarized in Table 4. The recon-
structed source centers and power densities all indicated that the performance of the multilevel
adaptive algorithm was very satisfactory.

4. Discussions and conclusion

We have developed the novel multilevel adaptive finite element algorithm to reconstruct the
bioluminescent source distribution, and eval uated its performancein numerical simulation. Our
results indi cate satisfactory localization and quantification in terms of source center and power,
aswell as a spatia resolution in the millimeter domain is feasible with aid of a priori informa-
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Fig. 7. Numerical study on the spatia resolution of the multilevel adaptive algorithm. (a)
The BLT reconstruction in the case of 1.5mm separation; (b) The counterpart in the case of
1.0mm separation; and (c) That in the case of 0.5mm separation.

Table 4. Comparison between the actual and reconstructed source centers and energy den-

sSities.
Instance Actual pos. Recons. pos. Actual density  Recons. density RE
1.5mm (-3.0,5.0,13.25) (-2.27,5.64,13.9) 0.238 0.232 2.52%
(-3.0,5.0,16.75) (-2.84,5.51,16.67) 0.238 0.196 17.6%
1.0mm (-3.0,5.0,13.50) (-2.72,5.79,13.67) 0.238 0.250 5.04%
(-3.0,5.0,16.50) (-3.67,4.57,15.99) 0.238 0.204 14.3%

tion on the permissible source region. Our work demonstrates the merits and potential of the
multilevel adaptive approach for optical molecular tomography. Taking into account the whole
computational experiment framework, three novel features have been applied to establish and
evaluate the multilevel adaptive finite element algorithm.

First, the multilevel adaptive strategy makes the BLT reconstruction intelligent. The ele-
ments for the reconstructed source become more and more refined through a posteriori error
estimation, which generally leads to better location and quantification to the actual source. The
consumption time, robustness and stability of the optimization procedure are beneficial from
multilevel tactics with the accompaniment of the adaptive mesh evolution. Although the source
reconstruction method of BLT based on the uniform refinement mesh has the multilevel mer-
its to probably acquire the preferable results than the proposed a gorithm, the reconstruction
process will likely suffer from its expensive computation cost and instability which arises from
the tremendous dimension of the unknown variables and the severely ill-posed characteristic
dueto the overly detailed discretization to the given domain, to say nothing of the direct recon-
struction method on the overly detailed mesh without possession of the adaptive and multilevel
features.

Secondly, a priori knowledge, especially the utility of permissible source region, improves
the BLT reconstruction significantly. The more a priori information we have, the more precise
and stable the BLT reconstruction becomes. In thiswork, four factorsincluding the light power
distribution of the phantom surface, the anatomical structure of the phantom, the peak intensity
attenuation of the photon transportation and the FWHM of the bioluminescent source in the
different biological tissues help choose the permissible source region. Recently, avisua hulls
based method has been proposed to estimate atumor shapefrom aseries of 2D bioluminescence
views, which can be also used to specify the permissible source region [35].

Lastly, the theoretical and computational ingredientsin the forward process are made differ-

#68917 - $15.00 USD Received 16 March 2006; revised 17 August 2006; accepted 18 August 2006
(C) 2006 OSA 4 September 2006 / Val. 14, No. 18/ OPTICS EXPRESS 8222



ent from that in the sourceinversion to avoid the inverse crime. In view of the precise simulation
of Monte Carlo method to photon transportation in the biological tissues, it is more reasonable
than other methods to synthesize the measured data. Different meshes are used to further de-
couple the forward and inverse processes.

Although the proposed multilevel adaptive algorithm has been evaluated through a series of
computational experiments, many practical factors such as the detection method are not fully
considered. Recently, a non-contract detection mode with a highly sensitive charge-coupled de-
vice (CCD) camera has been developed [1], which improves the SNR and the spatial sampling
of the detected signal and simplifies the experimental equipment and operation. We believe that
the utility of the MC method based synthetic measured data insures the appearance of the same
performance with the computational experiments if the equipment and calibration techniques
are precisely designed in the real BLT experiment. Our future work will focus on the source
reconstruction using the multilevel adaptive algorithm and the physical phantoms. Relevant
results will be reported later.
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