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Abstract
Bioluminescence imaging has been extensively applied to in vivo small animal
imaging. Quantitative three-dimensional bioluminescent source information
obtained by using bioluminescence tomography can directly and much more
accurately reflect biological changes as opposed to planar bioluminescence
imaging. Preliminary simulated and experimental reconstruction results
demonstrate the feasibility and promise of bioluminescence tomography.
However, the use of multiple approximations, particularly the diffusion
approximation theory, affects the quality of in vivo small animal-based image
reconstructions. In the development of new reconstruction algorithms, high-
order approximation models of the radiative transfer equation and spectrally
resolved data introduce new challenges to the reconstruction algorithm and
speed. In this paper, an SP3-based (the third-order simplified spherical
harmonics approximation) spectrally resolved reconstruction algorithm is
proposed. The simple linear relationship between the unknown source
distribution and the spectrally resolved data is established in this algorithm.
A parallel version of this algorithm is realized, making BLT reconstruction
feasible for the whole body of small animals especially for fine spatial
domain discretization. In simulation validations, the proposed algorithm shows
improved reconstruction quality compared with diffusion approximation-based
methods when high absorption, superficial sources and detection modes are
considered. In addition, comparisons between fine and coarse mesh-based BLT
reconstructions show the effects of numerical errors in reconstruction image
quality. Finally, BLT reconstructions using in vivo mouse experiments further
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demonstrate the potential and effectiveness of the SP3-based reconstruction
algorithm.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bioluminescence imaging has become an indispensable imaging modality in preclinical
research (Ntziachristos et al 2005, Weissleder 2002). It is extensively applied and is an efficient
tool for in vivo small animal research. Usually, in bioluminescence imaging, bioluminescence
probes (such as the luciferase gene) are used to label the specified biological targets. The
photons emitted by bioluminescence probes are detected after they are scattered and partly
absorbed within the small animal body. Therefore, when using planar bioluminescence
imaging, the collected surface photon distribution does not accurately and directly reflect
the biological target activity (Virostko et al 2007). The acquisition of three-dimensional
bioluminescence source information (that is bioluminescence tomography (BLT)) becomes
necessary for improved observation of biological phenomena.

Previous work on bioluminescence tomography has demonstrated its potential
in simulations and experimental reconstructions. However, when performing BLT
reconstructions on small animals, several approximations and assumptions can lead to
poor bioluminescence source localization (Virostko et al 2007). Single wavelength and
mixed spectral BLT reconstructions produce poor results especially when bioluminescence
sources are located far from the animal surface. On the other hand, the use of spectrally
resolved information in whole-body small animal reconstruction violates the assumptions of
the diffusion approximation theory in some cases (such as high absorption tissues, void-
like domains, small tissue geometries and so on). A priori information and high-order
approximations to the radiative transfer equation (RTE) need to be further investigated
to improve BLT reconstruction. Anatomical information and relevant optical properties
(Alexandrakis et al 2005, Lv et al 2007), spectrally resolved measurements (Kuo et al 2004,
Chaudhari et al 2005, Alexandrakis et al 2005, Cong and Wang 2006, Dehghani et al 2006)
and the spatial distribution of surface photons (Cong et al 2005) are validated and extensively
applied in reconstructions. BLT reconstructions employing direct RTE models and high-order
approximations need to be further developed (Klose et al 2005, Klose and Beattie 2008).
With respect to the heterogeneous tissue characteristics and high-order approximation models
in small animals, spectrally resolved BLT reconstruction becomes costly in speed and even
impossible to achieve in terms of the memory requirements of sequential execution. In this
context, parallel execution mode makes BLT reconstruction feasible.

BLT reconstructions can be realized by establishing an objective function and minimizing
the discrepancies between the surface measurements and the computed photon density.
Similarly, as in statistical reconstruction in positron emission tomography (PET), a source
basis function-based reconstruction has been developed (Alexandrakis et al 2005). In this
method, each point or element in the discretized domain is treated as a bioluminescence
source. The boundary photon density information is collected as source basis functions and
then the corresponding optimization is performed to obtain the reconstruction results. Source
basis functions (such as the system response P matrix in PET) can be calculated prior to
source reconstruction using deterministic or Monte Carlo methods, allowing for a reduction
in reconstruction time. However, since virtually all of the bioluminescence photons are
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scattered during their propagation, and the boundary photon density is sensitive to propagation
domain changes (Alexandrakis et al 2006), precalculating source basis functions will affect
the reconstruction quality to a certain degree. Moreover, during the reconstruction, ‘forward
projection’ and ‘back-projection’ are time consuming. Another method is to determine the
direct linear relationship between the unknown source distribution and the boundary photon
density (Cong et al 2005). Although matrix inversion calculations need to be performed, the
obtained least-squares (LS) problem based on the linear relationship facilitates a solution to
the BLT problem and reduces the reconstruction time.

In this work, a spectrally resolved reconstruction algorithm is developed using the third-
order simplified spherical harmonics (SP3) approximation. A linear relationship between the
unknown source distribution and the measurable boundary flux is established. To handle
the data storage and process problems of sequential execution, the relevant data matrices are
operated in distributed mode. Parallel execution is performed during the entire reconstruction,
making BLT reconstruction feasible especially on the fine mesh of the domain. Validation
of the simulation in the cases of high absorption domain, superficial source positions and
single- and multiview data acquisitions shows the effectiveness of the proposed algorithm.
BLT reconstructions on coarse and fine mesh demonstrate the effects of domain discretization
on reconstruction quality and the necessity of selecting a suitable fine mesh. Experimental
BLT reconstructions further show the potential of the SP3-based reconstruction algorithm for
practical bioluminescence imaging. In the next section, we present the SP3-based spectrally
resolved BLT algorithm. In the third section, we evaluate the performance of the proposed
method with respect to several factors discussed above. In the final section, we discuss relevant
issues and conclude the paper.

2. Formulation

2.1. Spectrally resolved BLT reconstruction with the SP3 approximation

2.1.1. SP3 approximation. The radiative transfer equation (RTE) comes from the energy
conservation principle (Vo-Dinh 2002). In the RTE, some wave phenomena such as
polarization and interference are ignored. When the surface optical signals are collected
in bioluminescence imaging, the light source is generally assumed to be invariant. Therefore,
the steady-state RTE in 3D is used for the wavelength λ (Klose et al 2005):

ŝ · ∇ψ(r, ŝ, λ) + (μs(r, λ) + μa(r, λ))ψ(r, ŝ, λ)

= μs(r, λ)

∫
4π

p(ŝ, ŝ′)ψ(r, ŝ′, λ) dŝ′ + S(r, ŝ, λ) (1)

where ψ(r, ŝ, λ), μa(r, λ), μs(r, λ) and S(r, ŝ, λ) are the radiance, absorption coefficient,
scattering coefficient and bioluminescence source, respectively; p(ŝ, ŝ′) is the scattering phase
function and gives the probability of a photon scattering anisotropically from the incoming
direction ŝ′ to the outgoing direction ŝ. Generally, the Henyey–Greenstein (HG) phase function
is usually used to characterize this probability (Ishimaru 1997):

p(cos θ) = 1 − g2

4π(1 + g2 − 2g cos θ)3/2
(2)

where g is the anisotropy parameter; cos θ denotes the scattering angle and is equal to ŝ· ŝ′ when
we assume that the scattering probability only depends on the angle between the incoming and
outgoing directions. The HG phase function is easily expanded by the Legendre polynomial
and is therefore convenient for numerical computation. After a series of deductions in the
planar geometry with the spherical harmonics methods (PN), the 3D SP3 approximation is
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obtained by replacing the 1D diffusion operator with its 3D counterpart (Klose and Larsen
2006):

(3a)
⎧⎪⎪⎨
⎪⎪⎩

−∇ · 1

3μa1(λ)
∇ϕ1(λ) + μa(λ)ϕ1(λ) −

(
2

3
μa(λ)

)
ϕ2(λ) = S(λ)

−
(

2

3
μa(λ)

)
ϕ1(λ)−∇ · 1

7μa3(λ)
∇ϕ2(λ)+

(
4

9
μa(λ)+

5

9
μa2(λ)

)
ϕ2(λ)= − 2

3
S(λ) (3b)

where μan = μs(1 − gn) + μa(n = 1, 2, 3), and ϕi(i = 1, 2) are the composite moments
relevant to the Legendre moments. The Legendre moments can be obtained by expanding ψ

with the PN approximation. Detailed deductions are described in Klose and Larsen (2006).
We use

Rn =
∫ 1

0
R(ω)ωn dω (4)

to depict the effect of reflectivity in different angular moments on the SPN approximation.
Since there are no external sources present in bioluminescence imaging, the corresponding
boundaries are given (Klose and Larsen 2006):

(5a)
⎧⎪⎨
⎪⎩

(
1+B1

3μa1(λ)

)
v · ∇ϕ1(λ) −

(
D1

μa3(λ)

)
v · ∇ϕ2(λ) = − (

1
2 + A1

)
ϕ1(λ) +

(
1
8 + C1

)
ϕ2(λ)

−
(

D2
μa1(λ)

)
v · ∇ϕ1(λ) +

(
1+B2

7μa3(λ)

)
v · ∇ϕ2(λ) = (

1
8 + C2

)
ϕ1(λ) − (

7
24 + A2

)
ϕ2(λ). (5b)

The coefficients A1, . . . , D1, . . . , A2, . . . , D2 can be found in Klose and Larsen
(2006). Furthermore, the exiting partial current J + is obtained at each boundary
point r:

J +(λ) =
(

1

4
+ J0

)(
ϕ1(λ) − 2

3
ϕ2(λ)

)
−

(
0.5 + J1

3μa1(λ)

)
v · ∇ϕ1(λ)

+
1

3

(
5

16
+ J2

)
ϕ2(λ) −

(
J3

7μa3(λ)

)
v · ∇ϕ2(λ) (6)

where the coefficients J0, . . . , J3 can also be found in Klose and Larsen (2006). Note that SP1

(the diffusion equation) can be obtained correspondingly by setting ϕ2 = 0. When the optical
data at the discretized wavelength λk are collected in an experiment, the general equation form
for equations (3a) and (3b) is followed to describe the proposed reconstruction algorithm

− ∇ · Ci,∇ϕi
(λk)∇ϕi(λk) + Ci,ϕ1(λk)ϕ1(λk) + Ci,ϕ2(λk)ϕ2(λk) = Si (λk) (i = 1, 2). (7)

2.1.2. Reconstruction method. In the frame of the finite element analysis, after applying the
Gauss divergence theorem and considering Robin boundary conditions (equations (5a)–(5b)),
we get the following equation for BLT reconstruction:∫

�

{Ci,∇ϕi
(λk)∇ϕi(λk) · ∇υ + [Ci,ϕ1(λk)ϕ1(λk) + Ci,ϕ2(λk)ϕ2(λk)]υ} d�

+
∫

∂�

{−Ci,∇ϕi
(λk)[fv·ϕi

(ϕ1(λk)) + fv·ϕi
(ϕ2(λk))]υ} d∂� =

∫
�

Si (λk)υ d�.

(8)

The function fv · ϕi(·) can be obtained through solving the boundary equations ((5a)–(5b))
and expressed by the linear combination of ϕ1(λk), ϕ2(λk).
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When the reconstruction domain � is discretized as a volumetric mesh T , the space of
the linear finite element V is introduced on T , satisfying V ⊂ H 1(�). In that case, ϕi(λk) and
Si(λk) are approximated as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕi(r, λk) ≈
NP∑
p=1

ϕi,p(λk)υp(r) (9a)

Si(r, λk) ≈
NP∑
p=1

si,p(λk)υp(r) (9b)

where ϕi,p(λk) and si,p(λk) are the discretized values at a discretized point p when using
the basis function vp(r); NP is the total number of discretized points on the entire domain.
Considering equation (8) and the SP3 approximation, for a volumetric element τe, we have[

m1ϕ1(λk) m1ϕ2(λk)

m2ϕ1(λk) m2ϕ2(λk)

] [
ϕ1,τe

(λk)

ϕ2,τe
(λk)

]
=

[
b1ϕ1(λk)

b2ϕ2(λk)

] [
s1,τe

(λk)

s2,τe
(λk)

]
(10)

where

miϕj
(λk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
τe

{Ci,∇ϕi
(λk)∇υp · ∇υq + Ci,ϕi

(λk)υpυq} dr

−
∫

∂τe

Ci,∇ϕi
(λk)fv·ϕi

(υp)υq dr if i = j∫
τe

Ci,ϕj
(λk)υpυq dr −

∫
∂τe

Ci,∇ϕi
(λk)fv·ϕi

(υp)υq dr if i �= j

(11)

and

bi,ϕi
(λk) =

∫
τe

υpυq dr. (12)

After assembling all the submatrices, we get[
M1ϕ1(λk) M1ϕ2(λk)

M2ϕ1(λk) M2ϕ2(λk)

] [
ϕ1(λk)

ϕ2(λk)

]
=

[
B

B

] [
S1(λk)

S2(λk)

]
. (13)

By inverting the matrix on the left-hand side of equation (13), we have

(14a)
{

ϕ1(λk) = (
IM1ϕ1(λk) − 2

3 IM1ϕ2(λk)
) · B · S(λk)

ϕ2(λk) = (
IM2ϕ1(λk) − 2

3 IM2ϕ2(λk)
) · B · S(λk) (14b)

where IMiϕj
(λk) are the submatrices of the inverse matrix IM(λk) corresponding to

Miϕj
(λk). Note that the matrix on the left-hand side of equation (13) is considered as

the entire one when the inversion is performed. After we remove the rows in matrices(
IM1ϕ1(λk)− 2

3 IM1ϕ2(λk)
) ·B and

(
IM2ϕ1(λk)− 2

3 IM2ϕ2(λk)
) ·B corresponding to the boundary

measurable discretized points, we use equation (6) to get

J +,b(λk) = β1(λk)ϕ
b
1 (λk) + β2(λk)ϕ

b
2 (λk)

= (β1(λk)G1(λk) + β2(λk)G2(λk)) · S(λk)

= G(λk)S(λk) (15)

where β1(λk) and β2(λk) can be calculated based on equation (6); G1(λk) and G2(λk) are the
corresponding matrices after the operation of rows removing in equations (14a) and (14b).
When the surface optical data at K wavelengths are collected, we get

J +,b = AS (16)
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where

J +,b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J +,b(λ1)

...

J +,b(λk)

...

J +,b(λK)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ1G(λ1)

...

γkG(λk)

...

γKG(λK)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Generally, A is considered as an ill-conditioned matrix because of the ill-posed problem of
BLT. The surface measured data J +,m corresponding to J +,b will likely lead to a reconstruction
failure when solving equation (16) directly due to the noise. We can though solve the bound-
constrained least-squares problem

min
0<S<Ssup

�(S) : ‖AS − J +,m‖2 + δη(S) (18)

where Ssup is the upper bound of the source density, δ is the regularization parameter and η(·)
is the penalty function.

By minimizing the objective function �(S), BLT reconstruction is possible. Since the
least-squares problem easily obtains the Hessian matrix, several types of Hessian matrix-based
optimization algorithms have been adopted to obtain good reconstructions (Cong et al 2005,
Lv et al 2007). However, these methods require a significant amount of memory during the
optimization procedure, especially when fine discretization at the whole-body level of small
animals is used in the reconstruction. In addition, when computing the search direction, it
is necessary to invert the Hessian matrix, a time-consuming process that severely affects the
speed of BLT reconstruction. One solution to this is to use a quasi-Newton method. Generally,
this method builds up an approximate Hessian matrix through the use of gradients and iterative
algorithms. This approximate matrix is obtained in real time by vector–vector multiplications
and is easy to invert, saving memory and time requirements. Here, the limited memory variable
metric-bound constrained quasi-Newton method (BLMVM) is used for BLT reconstruction.
The detailed algorithm is found in Benson and Moré (2001).

2.2. Parallel implementation

When the reconstruction domain is discretized into NP points, the SP3-based BLT
reconstruction needs to process a 2NP × 2NP matrix compared with an NP × NP matrix in
diffusion approximation-based reconstructions. The computational complexity of the matrix
inversion is O(N3). Therefore, the computation burden is increased remarkably in the SP3-
based reconstruction. Although computer hardware technology is rapidly improving, it is very
difficult to process a matrix that has a very large number of elements. In addition, sequential
execution is severely time consuming. Time analysis of the simulation of photon propagation
using the SPN approximation has shown a significant reduction in time when using a parallel
implementation (Lu and Chatziioannou 2009).

To make this reconstruction algorithm possible, a fully parallel version was developed.
All of the components in the reconstruction were parallelized, including the FEM-based matrix
assembly, the matrix inversion and the BLMVM-based optimization. To perform the parallel
reconstruction and reduce the load imbalance problem, a multilevel k-way partitioning method
was used to perform the partitioning after the input of the volumetric mesh (Karypis and Kumar
1998). This method achieves improved performance by reducing the dimensions of the mesh,
partitioning it into a smaller size and refining it back to the original.
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Table 1. Optical properties of mouse muscle compared to a mouse-shaped phantom

Real mouse muscle Mouse phantom

Wavelength 580 nm 620 nm 660 nm 580 nm 620 nm 660 nm

μa(λk) (mm−1) 0.463 0.107 0.08 0.038 0.006 0.004
μ′

s (λk) (mm−1) 0.975 0.922 0.902 1.82 1.66 1.46
μ′

s (λk)/μa(λk) 2.1 8.6 11.3 47.9 276.7 339.5
1/(μ′

s (λk) + μa(λk)) 0.69 0.97 1.02 0.54 0.60 0.68

3. Results

3.1. Simulation verifications

Ever since the BLT concept was proposed in 2003 (Wang et al 2003), a number of possible
research scenarios have been investigated which use liquid or solid optical phantoms (Gu
et al 2004, Cong et al 2005, Dehghani et al 2006, Kuo et al 2007) as well as real mouse subjects
(Wang et al 2006, Kuo et al 2007). There are, however, significant differences between real
mice and optical phantoms, and the differences between them need to be addressed. One
important factor is the optical properties at the time of the experiment. Table 1 shows a
comparison of the optical properties between mouse muscle and a commercial mouse-shaped
phantom fabricated by Caliper Life Sciences (Hopkinton, MA, USA). Three wavelengths
(580, 620, 660 nm) are commonly used for spectrally resolved data acquisition in luciferase-
based bioluminescence imaging. The optical properties of mouse muscle were derived using
Bevilacqua’s method (Bevilacqua et al 1999). One parameter of interest is the ratio of μ′

s

to μa . Generally, if the ratio of these parameters is larger than 10.0, it can be said that the
corresponding optical domain has high-scattering characteristics. In this case, the diffusion
approximation is considered to be suitable for successfully modeling the photon propagation.
However, this ratio for mouse muscle is much lower compared with that of the mouse-shaped
phantom, as shown in table 1. Even if the wavelength is 660 nm, the ratio is just 11.3. Another
important parameter is the mean free path (1/(μ′

s + μa)). The diffusion approximation tends
to fail if the depth of the bioluminescence source is less than one or even several (typically
two) mean free paths. In this case, the reconstruction localization and quantity is significantly
affected (Virostko et al 2007). The data in table 1 demonstrate that the actual mouse muscle
has a longer mean free path when compared with the mouse-shaped phantom.

In recent years, several groups have attempted to develop multiview-based data acquisition
systems for BLT based on the CCD camera (Kuo et al 2005, Wang et al 2006). Multiview-
based data are very useful since the photon distribution can be obtained more accurately.
However, more efficient methods of combining the data from multiple views need to be
developed. In addition, one distinct advantage of bioluminescence imaging is its ability
to achieve high throughput. This is usually limited in multiview-based data acquisitions.
Therefore, single view measurements and new reconstruction methods should be further
investigated for BLT reconstruction. Adaptive mesh evolution-based reconstruction methods
are being developed to improve BLT reconstruction quality and speed (Lv et al 2006), but
the selection of an optimal initial coarse mesh is always a critical and sometimes problematic
step. Furthermore, sequential executions limit reconstructions on fine meshes, especially for
large volume domains. It is therefore necessary to explore reconstruction differences when
using meshes with different discretized scales.
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Monte Carlo (MC) methods can produce accurate simulation results and also avoid the
inverse crime problem. However, these methods are severely time consuming. To accelerate
simulations, MPI-based parallel MC codes have been developed based on the molecular
optical simulation environment (MOSE) (Li et al 2004) in order to perform spectrally resolved
simulations. The simulation reconstruction domain was based on the mouse-shaped phantom.
To acquire the shape of the phantom, an Imtek microCAT system (Siemens Preclinical
Solutions, Knoxville, TN) was used. The commercial software Amira 3.0 (Mercury Computer
Systems, Inc., Chelmsford, MA) was used to convert the CT images into a tetrahedral-based
finite element volumetric mesh. About 2/3 of the entire phantom was selected for mesh
generation. Two volumetric meshes (called fine mesh and coarse mesh) were obtained with
different discretized scales. The average element diameter of the coarse mesh and fine mesh
were 2.0 mm and 1.5 mm, respectively. Note that the memory cost of the inverse matrix at the
single wavelength was about 1.6 GB when SP3-based BLT reconstruction was performed on
the fine mesh.

In the simulation settings, a solid spherical source with 1.0 mm radius was placed at
different deep positions in a MC simulation, that is (4,−3, 0), (4,−3, 5) and (4,−3, 10)

(unit: mm). A total of 107 photons at each wavelength were tracked due to the high absorption
coefficient of the selected domain. The distance of the first source from the bottom flat
boundary of the phantom was about 7 mm. The distance of the third source from the top
curved boundary was about 2 mm. These source settings were suitable for verifying the
effects of the mean free path and different source locations from the reconstructed results. The
regularization parameter δ is difficult to be selected in advance. Furthermore, it is difficult
to quantify the reconstructed results due to the use of the regularization term. Spectrally
resolved measurements as a priori information were used to help obtain a unique and stable
BLT solution. To fully verify the effect of this information and evaluate the performance of
the SP3 approximation, we set δ to ‘0’ in the entire reconstruction. All the reconstructions
were performed on a cluster of 27 nodes (2 CPUs of 3.2 GHz and 4 GB RAM at each
node).

3.1.1. Multiview-based reconstructions on the fine mesh. In the first case, we just considered
multiview-based BLT reconstructions on the fine mesh since this setting can produce adequate
information with minimal discretized numerical errors. Figure 2 shows the reconstructed
results based on the DA and SP3 approximations. When ten CPUs were used, the reconstruction
time was 1592 s and 4001 s corresponding to DA and SP3 approximation when the source was
at (4,−3, 5). The effect of the mean free path was evaluated first. When multiview measured
data was used, the source at (4,−3, 10) was the most superficial among the three sources. From
figure 2(c), it is apparent that it is almost impossible to reconstruct this source accurately. The
reconstructed values are distributed and the center position offset is 7.2mm as shown in table 2.
The reason leading to such large errors most likely is that the diffusion approximation cannot
accurately describe photon propagation when the source is very superficial. The counterpart
reconstruction based on the SP3 approximation is shown in figure 2(f). The reconstructed
results more accurately reflect the real source information not only in the position offset
(0.8mm) but also in the distribution. Furthermore, figures 2(a) and (d) display the reconstructed
results when the source was placed at (4,−3, 0). The source was reconstructed well based on
both DA and SP3 approximation. The difference was that the reconstructed position offsets
were 2.4 mm and 1.1 mm corresponding to DA and SP3 approximation. The mean free path
and high absorption should contribute to this difference since the source was about 7 mm
away from the boundary. The deepest source reconstructions for multiview data acquisitions
are shown in figures 2(b) and (e). The reconstructed position offsets are 1.9 mm and 0.5 mm
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Table 2. Source reconstructed position comparisons between DA and SP3 approximation. (FM:
fine mesh, multiview; CM: coarse mesh, multiview; FS: fine mesh, single view; reconstruction:
the center position of reconstructed source; relative errors: the absolute distance between the
reconstructed and actual positions at X-, Y-, and Z-axis directions; Distance: the absolute distance
between the reconstructed and actual positions)

DA

Reconstruction Relative errors Distance

FM (4,−3, 0) (2.8, −2.6, 2.0) (1.2, 0.4, 2.0) 2.4
(4,−3, 5) (4.1, −4.8, 4.4) (0.1, 1.8, 0.6) 1.9
(4,−3, 10) (3.2, −8.3, 5.2) (0.8, 5.3, 4.8) 7.2

CM (4,−3, 0) (5.9, −4.0, 2.1) (1.9, 1.0, 2.1) 3.0
(4,−3, 5) (2.8, −4.4, 4.2) (1.2, 1.4, 0.8) 2.0
(4,−3, 10) (5.2, −1.8, 8.4) (1.2, 1.2, 1.6) 2.3

FS (4,−3, 0) (4.4, −2.2, 14.2) (0.4, 0.8, 14.2) 14.2
(4,−3, 5) (3.7, −3.5, 14.0) (0.3, 0.5, 14.0) 14.0
(4,−3, 10) (4.6, −2.6, 11.0) (0.6, 0.4, 1.0) 1.2

SP3

Reconstruction Relative errors Distance
FM (4,−3, 0) (3.7, −2.2, 0.7) (0.3, 0.8, 0.7) 1.1

(4,−3, 5) (4.1, −2.6, 4.7) (0.1, 0.4, 0.3) 0.5
(4,−3, 10) (3.9, −3.2, 9.2) (0.1, 0.2, 0.8) 0.8

CM (4,−3, 0) (5.1, −2.2, 0.2) (1.1, 0.8, 0.2) 1.4
(4,−3, 5) (3.7, −1.3, 4.7) (0.3, 1.7, 0.3) 1.7
(4,−3, 10) (3.7, −4.0, 7.9) (0.3, 1.0, 2.1) 2.3

FS (4,−3, 0) (3.7, −2.6, 0.5) (0.3, 0.4, 0.5) 0.7
(4,−3, 5) (4.2, −3.2, 5.5) (0.2, 0.2, 0.5) 0.6
(4,−3, 10) (4.6, −1.3, 7.9) (0.6, 1.7, 2.1) 2.8

for DA and SP3 approximation, respectively. Another important problem is that the DA-based
results show a reconstruction artifact, severely affecting the reconstruction quality.

3.1.2. Multiview-based reconstructions on the coarse mesh. In FEM-based photon
propagation simulations, the simulation error is bound by C1h

C2 , where h is the largest element
diameter, C2 is related to the degree of the basis function and the singularity of the problem, and
C1 reflects other factors (Zienkiewicz and Craig 1986). The element diameter has a significant
effect in the forward simulation precision. However, its effect in BLT reconstructions should
be further investigated. When the coarse mesh is used, the reconstructed results are shown in
figure 3 and the reconstructed center position information is also summarized in table 2. As a
whole, the reconstructed results become inferior compared with those on the fine mesh. One
observation is that the reconstructed results cover larger regions as is obvious after comparing
the results in figures 2 and 3. The second observation is that almost all the reconstructions
have artifacts. The third observation is that the reconstructed position errors become larger
than those on the fine mesh, as shown in table 2. One exception is that the reconstructed
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(a) (b)

Figure 1. The volumetric meshes used in simulation validations. Figure (a) and (b) are coarse
mesh and fine mesh, with average element diameters of 2.0 mm and 1.5 mm, respectively. The
surface and total discretized points of the coarse mesh are 2598 and 5102, respectively, and the
counterparts on the fine mesh are 4287 and 10 293.

(a)

(d)

(b)

(e )

(c )

( f )

Figure 2. Multiview-based reconstruction comparisons between DA and SP3 approximation on
the fine mesh. Figures (a), (b) and (c) are the DA-based reconstruction results when the source
was located at (4, −3, 0), (4, −3, 5), and (4, −3, 10), respectively (unit: mm). Figures (d), (e)
and (f) are the counterparts with the SP3-based reconstruction. Cross-sections with blue and
red boundaries are the center position of the actual and reconstructed sources, respectively. The
volumetric mesh denotes reconstructed values larger than 10% of the reconstructed maximum.

position offsets were 7.2 mm and 2.3 mm on the fine mesh and coarse mesh, respectively, with
diffusion approximation when the source was at (4,−3, 10). Since regularization methods
were not used in the reconstruction, one possible explanation was that the condition number of
the matrix A on coarse mesh was smaller than that on the fine mesh, reducing the sensitivity of
the measurement noise to model errors. However, SP3-based BLT reconstructions show good
results despite the fact that reconstruction artifacts exist. With respect to the coarse mesh and
SP3 approximation, reconstruction methods with adaptive mesh evolution strategy improve
BLT reconstruction quality.

3.1.3. Single view-based reconstructions on the fine mesh. Another BLT reconstruction
investigation was based on single view data collection because of the facile implementation
and the high throughput potential. In this case, we assume that the side used for data acquisition
is the bottom flat surface of the mouse. Regarding the domain discretization errors, fine mesh
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(a)

(d)

(b)

(e )

(c )

( f )

Figure 3. Multiview-based reconstruction comparisons between DA and SP3 approximation on
the coarse mesh. Figures (a), (b) and (c) are the DA-based reconstruction results when the source
was located at (4, −3, 0), (4, −3, 5) and (4, −3, 10), respectively. Figures (d), (e) and (f) are
the counterparts with SP3-based reconstruction. Cross-sections with blue and red boundaries
are the center position of actual and reconstructed sources, respectively. Volumetric mesh denotes
the reconstructed values larger than 10% of the reconstructed maximum.

(a)

(d)

(b)

(e )

(c )

( f )

Figure 4. Single view-based reconstruction comparisons between DA and SP3 approximation
on fine mesh. Figures (a), (b) and (c) are the DA-based reconstruction results when the source
was located at (4, −3, 0), (4, −3, 5) and (4, −3, 10), respectively. Figures (d), (e) and (f) are
the counterparts with SP3-based reconstruction. Cross-sections with blue and red boundaries
are the center position of actual and reconstructed sources, respectively. Volumetric mesh denotes
the reconstructed values larger than 10% of the reconstructed maximum.

was used for BLT reconstructions. The reconstructed results are shown in figure 4. With
respect to the bottom surface, the most superficial source was at (4,−3, 0). Its distance from
the detection surface was about 7 mm, which is much larger than the mean free path. We
could acquire a similar source reconstruction localization with multiview data acquisition when
the SP3 approximation was used, as shown in figure 4(d) and table 2. However, DA-based
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reconstruction could not localize the bioluminescence source (Figure 4(a) and table 2). Since
the same volumetric mesh and synthetic measured data were used in BLT reconstructions, the
reasonable explanation is that model errors of the diffusion approximation are more sensitive
than the SP3 approximation to the noise in MC-based synthetic data. When the source was at
(4,−3, 5), the DA-based reconstruction produced similar results (figure 4(b)) with the source
at (4,−3, 0). We could also obtain good reconstruction with the SP3 approximation as shown
in figure 4(e). The difference of the reconstructed results between the above source settings
is that the reconstructed source distribution was enlarged when the source was at (4,−3, 5).
The reconstruction became sharper when the source was localized at (4,−3, 10), which is
shown in figure 4(f). The localization errors of the latter two sources were 0.6 mm and
2.8 mm, respectively, as shown in table 2. Note that the distances between the sources and
the measured surface were about 12 mm and 17 mm. The maximal diameter of the mouse
volume is about 25 mm. Therefore, a single view data acquisition could be suitable for real
mouse geometries with the SP3 approximation.

3.1.4. Quantitative BLT reconstructions. Quantitative BLT reconstruction means that the
reconstructed source intensities are consistent when the same source is placed at different
locations, especially at different depths. Compared with planar bioluminescence imaging,
quantitative reconstruction is another important advantage of BLT besides the 3D source
localization. In this case, we just show the reconstructed source intensities, obtained by
integration over the entire reconstruction domain. The relative errors (RE) between different
deep positions are calculated by |Sr − Sar |/Sar , where Sr and Sar are the reconstructed source
intensity and the average of three source reconstructions. Figure 5(a) shows the DA and SP3

reconstructed results. Compared with the multiview (MV) data acquisition, single view-based
(SV) reconstructed source intensities have larger deviations. However, the SP3-based SV
reconstructions are much better than the DA-based counterparts. The maximal REs are 21%
and 11% for DA- and SP3-based MV reconstructions, respectively. Note that the reconstructed
intensities with the sources at (4,−3, 0) and (4,−3, 5) were more consistent compared with
those at (4,−3, 10). The effect of the mean free path most likely is the key factor here. This
phenomenon is more distinct when the ±20% errors in optical property are considered in
SP3-based MV BLT reconstructions, as shown in figure 5(c). However, these reconstructions
show much better performance compared with the DA-based counterparts. From figure 5(d),
we see that the maximal REs are 170% and 40% for the DA- and SP3-based reconstructions,
respectively.

3.2. Experimental reconstructions

To further verify the SP3-based reconstruction algorithm, living mouse experiments were
performed on a Maestro 2 in vivo imaging system (CRI, Woburn, MA). This system uses a
cooled CCD camera and a liquid crystal tunable filter (LCTF) to acquire spectrally resolved
data. To simulate a bioluminescence source, a calibrated luminescent bead (Mb-Microtec,
Bern, Switzerland) was used with an emission spectrum similar to that of a firefly luciferase-
based source (Kuo et al 2007, Klose and Beattie 2008). In this bead, tritium is used to
excite phosphor that generates photons, making it a very stable source. Its dimensions
are 0.9 mm in diameter and 2.5 mm in length. Figure 6(a) shows a SKH1-hr hairless
mouse (Charles River, San Diego, CA) used in this experiment. Before performing the
experiments, the mouse was anesthetized and the bead was surgically inserted into the
mouse body. When the filter bandpass width was set to 20 nm, the optical data at two
wavelengths (600 and 660 nm) were collected from a dorsal view. The exposure time for
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(a)

(c )

(b)

(d)

Figure 5. Quantitative BLT reconstruction comparisons between DA and SP3 approximation
on fine mesh. Figures (a) and (c) are the absolute reconstructed source intensity,
respectively, without and with optical property errors, which are obtained by integration
over the entire domain. Figures (b) and (d) are the relative errors corresponding to
figures (a) and (c).

each wavelength was 5 min to obtain high signal-to-noise ratio (SNR). After finishing the
optical signal acquisition, the mouse was imaged using the microCAT system to obtain x-
ray CT images. These CT images were used to generate the volumetric mesh for image
reconstruction through a commercial software package (Amira). The same software was
also used to register the volumetric mesh and the mouse photograph for measured data
mapping.

Figure 7(a) shows the volumetric mesh used in this reconstruction and the mapped photon
distribution on the mouse surface. This mesh has the average element diameter of 1.5 mm
and contains 9193 discretized points and 44 333 tetrahedral elements. Regarding the signal
quality and the differences of the measured data at different wavelengths, two wavelengths
were used to perform BLT reconstruction. Since it is difficult to distinguish other organs
besides lung and bone using CT images, while the photon propagation region almost totally
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(a) (b)

Figure 6. (a) Photograph of the hairless mouse for bioluminescence imaging; (b) the acquired
optical data at 660 nm corresponding to (a).

comprises muscle, the corresponding optical properties at 660 nm shown in table 1 (μa: 0.187
and μ′

s : 0.929 at 600 nm (Virostko et al 2007)) were used in reconstruction. The tritium
source was easily distinguished in CT images and we could confirm that the actual position
of the source was (44.6, 50.2,−4.9). Figures 7(b) and (c) show the reconstructed results
corresponding to DA- and SP3-based algorithms. The center positions of the reconstructed
sources are (43.7, 52.0,−3.8) and (43.7, 50.7,−4.2), respectively. Although both of them
are very close to the actual source position, the reconstructed localization with the SP3-based
reconstruction is more precise. However, there is little difference between the experimental
reconstructions and the simulations especially regarding the DA-based reconstruction. The
key factor is that the measured view on the curved surface of the mouse is wider compared
with the flat surface measurement of the source, resulting additional measurement information
in the experimental reconstruction. Another reason is that the distance between the tritium
source and the top surface is about 8 mm, making the source deep with respect to the mean
free path. In addition, the complexity of in vivo mouse tissues also introduces some effects
in the reconstructed results when only the optical property of the muscle is used. However,
the experimental reconstructions show the potential of the proposed SP3-based reconstruction
algorithm especially when the regularization method is not used in the reconstructions. This
further demonstrates the source uniqueness in BLT reconstructions when sufficient a priori
information is used.

4. Discussions and conclusion

In this paper, an SP3-based spectrally resolved BLT reconstruction algorithm is developed.
The strategy of establishing the simple linear relationship between the unknown source
variable and the boundary measured data is introduced for the SP3 high-order approximation.
Parallel execution of the proposed algorithm makes possible and accelerates the reconstruction
of sources in the whole body of a mouse on a fine discretization domain. Simulation
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Figure 7. Single view experimental BLT reconstructions with DA- and SP3-based algorithms.
Figure (a) shows the volumetric mesh and the mapped photon distribution. Figures (b) and (c) are
the reconstructed results corresponding to the DA and SP3 methods. Cross-sections with blue and
red boundaries are the center position of actual and reconstructed sources, respectively. Volumetric
mesh denotes the reconstructed values larger than 10% of the reconstructed maximum.

reconstruction comparisons between DA- and SP3-based algorithms show the effectiveness and
numerical stability of the developed algorithm, with respect to superficial source settings, single
view-based data acquisitions and quantitative BLT reconstruction. Experimental real mouse
BLT reconstructions further show the possibility and potential of the SP3-based algorithm for
practical BLT applications.

In BLT, several approximations and assumptions have significantly affected the
performance of bioluminescence source reconstructions. Four types of bioluminescence
reporters can be used currently, that is luciferase enzymes from firefly (FLuc), click beetle
(CBRLuc), Renilla reniformis (hRLuc) and more recently Gaussia princeps (GLuc). The
spectrum range of these luciferases is about 400–750 nm (Zhao et al 2005). Even if BLT
is used at 660 nm, in vivo tissues such as muscle, skin and liver (Virostko et al 2007) show
high absorption characteristics. Due to the high scattering assumption of tissues, the diffusion
approximation theory has been extensively applied in optical imaging. The comparisons
between DA- and SP3-based reconstructions have shown that high-order approximations to
the RTE can bring much better numerical stability and reconstruction quality. Note that the
diffusion approximation has a significant adverse effect in BLT reconstruction quality when
the source is very close to the animal surface, something that is not being considered currently,
but is often the case in biological in vivo experiments. The proposed algorithm significantly
improves BLT reconstructions in this case.
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Another important assumption is that the mouse is optically homogeneous. The
optical properties between different organs of in vivo mice are very different. Multiple
BLT reconstructions have shown that the knowledge of the heterogeneous geometry and
optical properties is necessary for improved BLT reconstruction. Although preliminary
surface flux comparisons with MC methods have shown that SPN approximations provide
slight improvement compared with the DA in heterogeneous cases, fully parallel FEM
reconstruction framework in the proposed algorithm is also suitable for second-order
self-adjoint approximation formulas to the RTE. Future work will explore more precise
approximation models to improve BLT reconstruction.

In conclusion, we have developed a fully parallel BLT reconstruction algorithm with
high-order approximations to the RTE compared with DA. Simulation and experimental
reconstruction verifications demonstrated that BLT reconstructions using the proposed
algorithm acquire good source localization and quantity and better numerical stability and
efficiency. Further research will focus on real mouse experiments with disease models and the
relevant bioluminescence probes (Loening et al 2007) for the recently developed Optical-PET
(OPET) system (Douraghy et al 2008).
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